Menu Close

calculate-n-1-17-1-n-n-3-




Question Number 75063 by mathmax by abdo last updated on 06/Dec/19
calculate  Σ_(n=1) ^(17)   (((−1)^n )/n^3 )
calculaten=117(1)nn3
Commented by mathmax by abdo last updated on 17/Dec/19
let A =Σ_(n.=1) ^(17)  (((−1)^n )/n^3 ) ⇒ A =Σ_(p=1) ^([((17)/2)])   (1/((2p)^3 )) −Σ_(p=0) ^8 (1/((2p+1)^3 ))  =(1/8)Σ_(p=1) ^8 (1/p^3 )−Σ_(p=0) ^(8 )  (1/((2p+1)^3 )) also  Σ_(p=1) ^8 (1/p^3 ) =Σ_(p=1) ^4  (1/((2p)^3 )) +Σ_(p=0) ^3  (1/((2p+1)^3 )) =(1/8)Σ_(p=1) ^4  (1/p^3 ) +Σ_(p=0) ^3  (1/((2p+1)^3 ))  ⇒A =(1/8){(1/8) Σ_(p=1) ^4  (1/p^3 ) +Σ_(p=0) ^3  (1/((2p+1)^3 ))}−Σ_(p=0) ^8  (1/((2p+1)^3 ))  =(1/(64)) Σ_(p=1) ^4  (1/p^3 ) +((1/8)−1)Σ_(p=0) ^3  (1/((2p+1)^3 ))−Σ_(p=4) ^8  (1/((2p+1)^3 ))  =(1/(64))( 1+(1/2^3 )+(1/3^3 )+(1/4^3 ))−(7/8)(1+(1/3^3 ) +(1/5^3 ) +(1/7^3 ))  −((1/9^3 )+(1/(11^3 )) +(1/(13^3 )) +(1/(15^3 )) +(1/(17^3 ))) =....
letA=n.=117(1)nn3A=p=1[172]1(2p)3p=081(2p+1)3=18p=181p3p=081(2p+1)3alsop=181p3=p=141(2p)3+p=031(2p+1)3=18p=141p3+p=031(2p+1)3A=18{18p=141p3+p=031(2p+1)3}p=081(2p+1)3=164p=141p3+(181)p=031(2p+1)3p=481(2p+1)3=164(1+123+133+143)78(1+133+153+173)(193+1113+1133+1153+1173)=.
Answered by tw000001 last updated on 08/Dec/19
Commented by tw000001 last updated on 08/Dec/19
I use Desmos to find the answer,  but it′s impossible to use integral to solve,  so the answer is approximately at −0.8241.
IuseDesmostofindtheanswer,butitsimpossibletouseintegraltosolve,sotheanswerisapproximatelyat0.8241.

Leave a Reply

Your email address will not be published. Required fields are marked *