Menu Close

calculate-n-1-20-1-n-2-




Question Number 74884 by abdomathmax last updated on 03/Dec/19
calculate Σ_(n=1) ^(20)  (1/n^2 )
calculaten=1201n2
Commented by mathmax by abdo last updated on 03/Dec/19
let S=Σ_(n=1) ^(20)  (1/n^2 ) ⇒ S =Σ_(p=1) ^(10) (1/((2p)^2 )) +Σ_(p=0) ^([((19)/2)])  (1/((2p+1)^2 ))  =(1/4)Σ_(p=1) ^(10)  (1/p^2 ) +Σ_(p=0) ^9  (1/((2p+1)^2 ))  also  Σ_(p=1) ^(10)  (1/p^2 ) =(1/4)Σ_(p=1) ^5  (1/p^2 ) +Σ_(p=0) ^4  (1/((2p+1)^2 )) ⇒  S =(1/4){(1/4)Σ_(p=1) ^5  (1/p^2 ) +Σ_(p=0) ^4  (1/((2p+1)^2 ))}+Σ_(p=0) ^4  (1/((2p+1)^2 )) +Σ_(p=5) ^9  (1/((2p+1)^2 ))  =(1/(16))Σ_(p=1) ^5  (1/p^2 ) +(5/4) Σ_(p=0) ^4  (1/((2p+1)^2 )) +Σ_(p=5) ^9  (1/((2p+1)^2 ))  we have  Σ_(p=5) ^9  (1/((2p+1)^2 )) =_(p−5=k)   Σ_(k=0) ^4  (1/((2k+11)^2 )) ⇒  S =(1/(16))Σ_(p=1) ^5  (1/p^2 ) +(5/4)Σ_(p=0) ^4  (1/((2p+1)^2 )) +Σ_(p=0) ^4  (1/((2p+11)^2 ))  =(1/(16))(1+(1/2^2 ) +(1/3^2 ) +(1/4^2 ) +(1/5^2 ))+(5/4)(1+(1/3^2 ) +(1/5^2 ) +(1/7^2 ) +(1/9^2 ) +(1/(11^2 )))  +(1/(11^2 )) +(1/(13^2 )) +(1/(15^2 )) +(1/(17^2 )) +(1/(19^2 ))  S =(1/(16))(1+(1/4) +(1/9) +(1/(16)) +(1/(25)))+(5/4)(1+(1/9) +(1/(25)) +(1/(49)) +(1/(81)) +(1/(121)))  +(1/(11^2 )) +(1/(13^2 )) +(1/(15^2 )) +(1/(17^2 )) +(1/(19^2 )) =....its eazy now to find S..
letS=n=1201n2S=p=1101(2p)2+p=0[192]1(2p+1)2=14p=1101p2+p=091(2p+1)2alsop=1101p2=14p=151p2+p=041(2p+1)2S=14{14p=151p2+p=041(2p+1)2}+p=041(2p+1)2+p=591(2p+1)2=116p=151p2+54p=041(2p+1)2+p=591(2p+1)2wehavep=591(2p+1)2=p5=kk=041(2k+11)2S=116p=151p2+54p=041(2p+1)2+p=041(2p+11)2=116(1+122+132+142+152)+54(1+132+152+172+192+1112)+1112+1132+1152+1172+1192S=116(1+14+19+116+125)+54(1+19+125+149+181+1121)+1112+1132+1152+1172+1192=.itseazynowtofindS..
Commented by mathmax by abdo last updated on 05/Dec/19
another way   let  S =Σ_(n=1) ^(20)  (1/n^2 ) ⇒  S = Σ_(n=1_(n=3k) ) ^(20)  (1/n^2 ) +Σ_(n=1_(n=3k+1) ) ^(20)  (1/n^2 ) +Σ_(n=1_(n=3k+2) ) ^(20)  (1/n^2 )  =Σ_(n=1) ^([((20)/3)])  (1/(9n^2 )) +Σ_(n=0) ^([((19)/3)])  (1/((3k+1)^2 ))  +Σ_(n=0) ^([((18)/3)])  (1/((3k+2)^2 ))  =(1/9) Σ_(n=1) ^6  (1/n^2 ) +Σ_(n=0) ^6  (1/((3k+1)^2 )) +Σ_(n=0) ^6  (1/((3k+2)^2 ))  =(1/9){ 1+(1/2^2 ) +(1/3^2 ) +(1/4^2 ) +(1/5^2 ) +(1/6^2 )} +{1+(1/4^2 ) +(1/7^2 ) +(1/(10^2 )) +(1/(13^2 )) +(1/(16^2 ))+(1/(19^2 ))}  +{(1/2^2 ) +(1/5^2 ) +(1/8^2 ) +(1/(11^2 )) +(1/(14^2 )) +(1/(17^2 )) +(1/(20^2 ))} =....
anotherwayletS=n=1201n2S=n=1n=3k201n2+n=1n=3k+1201n2+n=1n=3k+2201n2=n=1[203]19n2+n=0[193]1(3k+1)2+n=0[183]1(3k+2)2=19n=161n2+n=061(3k+1)2+n=061(3k+2)2=19{1+122+132+142+152+162}+{1+142+172+1102+1132+1162+1192}+{122+152+182+1112+1142+1172+1202}=.

Leave a Reply

Your email address will not be published. Required fields are marked *