Menu Close

calculate-n-1-cos-2nx-n-




Question Number 67034 by mathmax by abdo last updated on 22/Aug/19
calculate Σ_(n=1) ^∞  ((cos(2nx))/n)
calculaten=1cos(2nx)n
Commented by mathmax by abdo last updated on 23/Aug/19
let S =Σ_(n=1) ^∞  ((cos(2nx))/n) ⇒ S =Re(Σ_(n=1) ^∞  (e^(i2nx) /n))  let W(x) =Σ_(n=1) ^∞  (e^(i2nx) /n) ⇒W^′ (x) =Σ_(n=1) ^∞  2ni  (e^(i2nx) /n)  =2iΣ_(n=1) ^∞  (e^(2ix) )^n  =2i e^(2ix)  Σ_(n=1) ^∞  (e^(2ix) )^(n−1)  =2i e^(2ix) Σ_(n=0) ^∞  (e^(2ix) )^n   =2i e^(2ix) ×(1/(1−e^(2ix) )) =((2i e^(2ix) )/(1−e^(2ix) )) ⇒  W(x) =−ln(1−e^(2ix) )  we have 1−e^(2ix) =1−cos(2x)−isin(2x)  =2sin^2 (x)−2isin(x)cos(x) =−2i sin(x){cosx+i sinx}  =−2isinx e^(ix)  ⇒ln(1−e^(2ix) ) =ln(−2i)+ln(sinx)+ix  =ln(2)+ln(−i) +ln(sinx)+ix =ln(2)+ln(e^(−((iπ)/2)) )+ln(sinx)+ix  =ln(2)−((iπ)/2) +ix +ln(sinx) =ln(2sinx)+i(x−(π/2)) ⇒  Σ_(n=1) ^∞   ((cos(2nx))/n) =ln(2sinx) .
letS=n=1cos(2nx)nS=Re(n=1ei2nxn)letW(x)=n=1ei2nxnW(x)=n=12niei2nxn=2in=1(e2ix)n=2ie2ixn=1(e2ix)n1=2ie2ixn=0(e2ix)n=2ie2ix×11e2ix=2ie2ix1e2ixW(x)=ln(1e2ix)wehave1e2ix=1cos(2x)isin(2x)=2sin2(x)2isin(x)cos(x)=2isin(x){cosx+isinx}=2isinxeixln(1e2ix)=ln(2i)+ln(sinx)+ix=ln(2)+ln(i)+ln(sinx)+ix=ln(2)+ln(eiπ2)+ln(sinx)+ix=ln(2)iπ2+ix+ln(sinx)=ln(2sinx)+i(xπ2)n=1cos(2nx)n=ln(2sinx).
Commented by mathmax by abdo last updated on 25/Aug/19
error at final line  we have W(x)=−ln(1−e^(2ix) ) ⇒  W(x) =−ln(2sinx)−i(x−(π/2)) =−ln(2sinx)+i(((π−2x)/2)) ⇒  Σ_(n=1) ^∞  ((cos(2nx))/n) =−ln(2sinx)
erroratfinallinewehaveW(x)=ln(1e2ix)W(x)=ln(2sinx)i(xπ2)=ln(2sinx)+i(π2x2)n=1cos(2nx)n=ln(2sinx)

Leave a Reply

Your email address will not be published. Required fields are marked *