Menu Close

calculate-n-1-cos-n-pi-3-n-




Question Number 67232 by prof Abdo imad last updated on 24/Aug/19
calculate Σ_(n=1) ^∞  ((cos(n(π/3)))/n)
calculaten=1cos(nπ3)n
Commented by mathmax by abdo last updated on 25/Aug/19
first let determine Σ_(n=1) ^∞  ((cos(nx))/n) =Re(Σ_(n=1) ^∞  (e^(inx) /n))  let s(x) =Σ_(n=1) ^∞  (e^(inx) /n) ⇒s^′ (x)=iΣ_(n=1) ^∞  e^(inx) =ie^(ix) Σ_(n=1) ^∞  e^(i(n−1)x)   =ie^(ix) Σ_(n=0) ^∞  e^(inx)  =((ie^(ix) )/(1−e^(ix) ))  ⇒s(x) =−ln(1−e^(ix) )+c  x=π ⇒Σ_(n=1) ^∞  (((−1)^n )/n) =−ln(2) =−ln(2)+c ⇒c =0  s(x) =−ln(1−e^(ix) )  ln(1−e^(ix) )=ln(1−cosx−isinx) =ln(2sin^2 ((x/2))−2isin((x/2))cos((x/2)))  =ln(−2isin((x/2))e^(i(x/2)) ) =ln(−2i)+ln(sin((x/2)))+i(x/2)  =ln(2)+ln(−i) +ln(sin((x/2)))+((ix)/2)  =ln(2sin((x/2)))−((iπ)/2) +((ix)/2) ⇒Σ_(n=1) ^∞  ((cos(nx))/n) =−ln(2sin((x/2)))  x=(π/3) ⇒ Σ_(n=1) ^∞  ((cos(((nπ)/3)))/n) =−ln(2sin((π/6))) =−ln(2×(1/2)) =0 so  we have  ((cos((π/3)))/1) +((cos(((2π)/3)))/2) +((cos(((3π)/3)))/3) +....=0  also we can extract that Σ_(n=1) ^∞  ((sin(nx))/n) =((π−x)/2) ⇒  Σ_(n=1) ^∞  ((sin(((nπ)/3)))/n) =((π−(π/3))/2) =(π/2)−(π/6) =((2π)/6) =(π/3)
firstletdeterminen=1cos(nx)n=Re(n=1einxn)lets(x)=n=1einxns(x)=in=1einx=ieixn=1ei(n1)x=ieixn=0einx=ieix1eixs(x)=ln(1eix)+cx=πn=1(1)nn=ln(2)=ln(2)+cc=0s(x)=ln(1eix)ln(1eix)=ln(1cosxisinx)=ln(2sin2(x2)2isin(x2)cos(x2))=ln(2isin(x2)eix2)=ln(2i)+ln(sin(x2))+ix2=ln(2)+ln(i)+ln(sin(x2))+ix2=ln(2sin(x2))iπ2+ix2n=1cos(nx)n=ln(2sin(x2))x=π3n=1cos(nπ3)n=ln(2sin(π6))=ln(2×12)=0sowehavecos(π3)1+cos(2π3)2+cos(3π3)3+.=0alsowecanextractthatn=1sin(nx)n=πx2n=1sin(nπ3)n=ππ32=π2π6=2π6=π3
Answered by Smail last updated on 25/Aug/19
Σ_(n=1) ^∞ (e^(inx) /n)=−ln(1−e^(ix) )  =−ln(1−cos(x)−isin(x))  =−ln(2sin^2 (x/2)−2isin(x/2)cos(x/2))  =−ln(2)−ln∣sin(x/2)∣−ln(sin(x/2)−icos(x/2))  =−ln(2)−ln∣sin(x/2)∣−ln(cos(((π−x)/2))−isin(((π−x)/2)))  =−ln(2)−ln∣sin(x/2)∣+((π−x)/2)i
n=1einxn=ln(1eix)=ln(1cos(x)isin(x))=ln(2sin2(x/2)2isin(x/2)cos(x/2))=ln(2)lnsin(x/2)ln(sin(x/2)icos(x/2))=ln(2)lnsin(x/2)ln(cos(πx2)isin(πx2))=ln(2)lnsin(x/2)+πx2i
Commented by Smail last updated on 25/Aug/19
For x=(π/3)  Σ_(n=1) ^∞ (e^(in(π/3)) /n)=−ln(2)−ln∣sin(π/6)∣+i((π−π/3)/2)  So, Σ_(n=1) ^∞ ((cos(n(π/3)))/n)=Re(Σ_(n=1) ^∞ (e^(in(π/3)) /n))  Σ_(n=1) ^∞ ((cos(((nπ)/3)))/n)=−ln(2)−ln∣sin(π/6)∣
Forx=π3n=1einπ3n=ln(2)lnsin(π/6)+iππ/32So,n=1cos(nπ3)n=Re(n=1einπ3n)n=1cos(nπ3)n=ln(2)lnsin(π/6)

Leave a Reply

Your email address will not be published. Required fields are marked *