Menu Close

Calculate-n-1-n-2-3-n-




Question Number 141791 by Chhing last updated on 23/May/21
Calculate   Σ_(n=1) ^(+∞)  (n^2 /3^n )
Calculate+n=1n23n
Answered by mr W last updated on 23/May/21
Σ_(n=1) ^∞ x^n =x+x^2 +x^3 +...=(x/(1−x))  Σ_(n=1) ^∞ nx^(n−1) =(1/(1−x))+(x/((1−x)^2 ))  Σ_(n=1) ^∞ nx^n =(x/(1−x))+(x^2 /((1−x)^2 ))  Σ_(n=1) ^∞ n^2 x^(n−1) =(1/(1−x))+(x/((1−x)^2 ))+((2x)/((1−x)^2 ))+((2x^2 )/((1−x)^3 ))  Σ_(n=1) ^∞ n^2 x^n =(x/(1−x))+((3x^2 )/((1−x)^2 ))+((2x^3 )/((1−x)^3 ))  with x=(1/3):  ⇒Σ_(n=1) ^∞ (n^2 /3^n )=(1/2)+(3/4)+(2/8)=(3/2)
n=1xn=x+x2+x3+=x1xn=1nxn1=11x+x(1x)2n=1nxn=x1x+x2(1x)2n=1n2xn1=11x+x(1x)2+2x(1x)2+2x2(1x)3n=1n2xn=x1x+3x2(1x)2+2x3(1x)3withx=13:n=1n23n=12+34+28=32
Answered by qaz last updated on 23/May/21
Σ_(n=1) ^∞ (n^2 /3^n )=Σ_(n=0) ^∞ (((n+1)^2 )/3^(n+1) )=(1/3)(xD+1)^2 ∣_(x=1/3) (1/(1−x))  =(1/3)[(xD)^2 +2xD+1]_(x=1/3) (1/(1−x))  =(1/3)(x^2 D^2 +3xD+1)∣_(x=1/3) (1/(1−x))  =(1/3)[((2x^2 )/((1−x)^3 ))+((3x)/((1−x)^2 ))+(1/(1−x))]_(x=1/3)   =(1/3)((3/4)+(9/4)+(3/2))  =(3/2)
n=1n23n=n=0(n+1)23n+1=13(xD+1)2x=1/311x=13[(xD)2+2xD+1]x=1/311x=13(x2D2+3xD+1)x=1/311x=13[2x2(1x)3+3x(1x)2+11x]x=1/3=13(34+94+32)=32
Answered by mathmax by abdo last updated on 23/May/21
let s(x)=Σ_(n=1) ^∞ x^n     with[∣x∣<1 ⇒s^′ (x)=Σ_(n=1) ^∞  nx^(n−1)  ⇒  xs^′ (x)=Σ_(n=1) ^∞  nx^n  ⇒s^′ (x)+xs^((2)) (x)=Σ_(n=1) ^∞  n^2 x^(n−1)  ⇒  xs^′ (x)+x^2 s^((2)) (x)=Σ_(n=1) ^∞ n^2  x^n   x=(1/3) ⇒Σ_(n=1) ^∞  (n^2 /3^n ) =(1/3)s^′ ((1/3))+(1/9)s^(′′) ((1/3)) we have  s(x)=(1/(1−x)) ⇒s^′ (x)=(1/((1−x)^2 )) and s′′(x)=−((2(1−x)(−1))/((1−x)^4 ))  =(2/((1−x)^3 )) so s^′ ((1/3))=(1/(((2/3))^2 ))=(9/4) and s^((2)) ((1/3))=2×((27)/8) =((27)/4) ⇒  Σ_(n=1) ^∞  (n^2 /3^n ) =(1/3).(9/4) +(1/9).((27)/4) =(3/4)+(3/4)=(6/4)=(3/2)
lets(x)=n=1xnwith[x∣<1s(x)=n=1nxn1xs(x)=n=1nxns(x)+xs(2)(x)=n=1n2xn1xs(x)+x2s(2)(x)=n=1n2xnx=13n=1n23n=13s(13)+19s(13)wehaves(x)=11xs(x)=1(1x)2ands(x)=2(1x)(1)(1x)4=2(1x)3sos(13)=1(23)2=94ands(2)(13)=2×278=274n=1n23n=13.94+19.274=34+34=64=32
Answered by qaz last updated on 23/May/21
Σ_(n=0) ^∞ (((n+1)^2 )/3^(n+1) )=Σ_(n=0) ^∞ (((n+1)^2 )/(Γ(n+1)))∫_0 ^∞ u^n e^(−3u) du  =∫_0 ^∞ e^(−3u) Σ_(n=0) ^∞ (((n+1)^2 )/(n!))u^n du  =∫_0 ^∞ e^(−3u) (xD+1)^2 ∣_(x=u) Σ_(n=0) ^∞ (x^n /(n!))du  =∫_0 ^∞ e^(−3u) (x^2 D^2 +3xD+1)∣_(x=u) e^x du  =∫_0 ^∞ e^(−3u) (x^2 +3x+1)e^x ∣_(x=u) du  =∫_0 ^∞ e^(−2u) (u^2 +3u+1)du  =(2/2^3 )+(3/2^2 )+(1/2)  =(3/2)  i have found  another intresting way.
n=0(n+1)23n+1=n=0(n+1)2Γ(n+1)0une3udu=0e3un=0(n+1)2n!undu=0e3u(xD+1)2x=un=0xnn!du=0e3u(x2D2+3xD+1)x=uexdu=0e3u(x2+3x+1)exx=udu=0e2u(u2+3u+1)du=223+322+12=32ihavefoundanotherintrestingway.

Leave a Reply

Your email address will not be published. Required fields are marked *