calculate-n-1-n-4-2n-2-3-x-n-n-in-case-of-convergence- Tinku Tara June 3, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 73261 by mathmax by abdo last updated on 09/Nov/19 calculate∑n=1∞(n4+2n2−3)xnn!incaseofconvergence. Commented by mathmax by abdo last updated on 09/Nov/19 wehave∑n=1∞(n4+2n2−3)xnn!=∑n=1∞n3(n−1)!xn+2∑n=1∞nxn(n−1)!−3∑n=1∞xnn!wehavefirst∑n=1∞xnn!=ex−1∑n=1∞nxn(n−1)!=∑n=0∞(n+1)xn+1n!=∑n=1∞xn+1(n−1)!+∑n=0∞xn+1n!=x∑n=0∞xn+1n!+xex=x2ex+xex∑n=1∞n3(n−1)!xn=∑n=0∞(n+1)3n!xn+1=∑n=0∞n3+3n2+n+1n!xn+1=∑n=1∞n2(n−1)!xn+1+3∑n=1∞n(n−1)!xn+1+∑n=0∞xn+1(n−1)!+∑n=0∞xn+1n!∑n=1∞n2(n−1)!xn+1=∑n=0∞(n+1)2xn+2n!=∑n=0∞n2+2n+1n!xn+2=∑n=1∞n(n−1)!xn+2+2∑n=1∞1(n−1)!xn+2+x2ex=∑n=0∞n+1n!xn+2+2∑n=0∞xn+3n!+x2ex=∑n=1∞xn+2(n−1)!+x2ex+2x3ex+x2ex=∑n=0∞xn+3n!+2x2ex+2x3ex=x3ex+2x3ex+2x2ex=(3x3+2x2)ex…becontinued… Answered by mind is power last updated on 09/Nov/19 use1,x,x(x−1),x(x−1)(x−2),x(x−1)(x−2)(x−3)asBaseofIR4[X]n4+2n2−3=an(n−1)(n−2)(n−3)+bn(n−1)(n−2)+cn(n−1)+dn+t∑n⩾1(n4+2n2−3)xnn!=∑n⩾4(axn(n−4)!)+b∑n⩾4xn(n−3))!+c∑n⩾4xn(n−2)!+d∑n⩾4xn(n−1)!+t∑n⩾4xnn!+{∑3n=1(n4+2n2−3)xnn!=h(x)}=ax4ex+bx3(ex−1)+cx2(ex−1−x)+dx(ex−1−x−x22)+t(ex−1−x−x22−x36)+h(x) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: p-n-nth-prime-p-1-2-p-2-3-p-3-5-Do-the-following-sums-converge-Prove-disprove-1-S-n-1-n-p-n-2-S-n-1-n-p-n-2-Next Next post: Question-73260 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.