Menu Close

calculate-n-1-n-4-2n-2-3-x-n-n-in-case-of-convergence-




Question Number 73261 by mathmax by abdo last updated on 09/Nov/19
calculate Σ_(n=1) ^∞ (n^4 +2n^2 −3)(x^n /(n!)) in case of convergence.
calculaten=1(n4+2n23)xnn!incaseofconvergence.
Commented by mathmax by abdo last updated on 09/Nov/19
we have  Σ_(n=1) ^∞ (n^4  +2n^2 −3)(x^n /(n!)) =Σ_(n=1) ^∞ (n^3 /((n−1)!))x^n  +2Σ_(n=1) ^∞ ((nx^n )/((n−1)!))  −3 Σ_(n=1) ^∞  (x^n /(n!))  we have first  Σ_(n=1) ^∞  (x^n /(n!)) =e^x −1  Σ_(n=1) ^∞  ((nx^n )/((n−1)!)) =Σ_(n=0) ^∞ (((n+1)x^(n+1) )/(n!)) =Σ_(n=1) ^∞  (x^(n+1) /((n−1)!)) +Σ_(n=0) ^∞  (x^(n+1) /(n!))  =x Σ_(n=0) ^∞  (x^(n+1) /(n!)) +x e^x  =x^2  e^x  +xe^x   Σ_(n=1) ^∞  (n^3 /((n−1)!))x^n  =Σ_(n=0) ^∞ (((n+1)^3 )/(n!))x^(n+1)   =Σ_(n=0) ^∞  ((n^3 +3n^2  +n +1)/(n!)) x^(n+1)  =Σ_(n=1) ^∞  (n^2 /((n−1)!))x^(n+1)  +3Σ_(n=1) ^∞ (n/((n−1)!))x^(n+1)   +Σ_(n=0) ^∞  (x^(n+1) /((n−1)!)) +Σ_(n=0) ^∞  (x^(n+1) /(n!))  Σ_(n=1) ^∞  (n^2 /((n−1)!))x^(n+1)  =Σ_(n=0) ^∞  (((n+1)^2  x^(n+2) )/(n!))  =Σ_(n=0) ^∞  ((n^2  +2n+1)/(n!)) x^(n+2)  =Σ_(n=1) ^∞  (n/((n−1)!))x^(n+2) +2Σ_(n=1) ^∞ (1/((n−1)!))x^(n+2)   +x^2  e^x   =Σ_(n=0) ^∞  ((n+1)/(n!))x^(n+2)   +2Σ_(n=0) ^∞  (x^(n+3) /(n!)) +x^2  e^x   =Σ_(n=1) ^∞  (x^(n+2) /((n−1)!)) +x^2  e^x  +2x^3  e^x  +x^2 e^x   =Σ_(n=0) ^∞ (x^(n+3) /(n!)) +2x^(2 ) e^x  +2x^3  e^x   =x^3 e^x  +2x^3  e^x  +2x^2  e^x  =(3x^3  +2x^2 )e^x  ...be continued...
wehaven=1(n4+2n23)xnn!=n=1n3(n1)!xn+2n=1nxn(n1)!3n=1xnn!wehavefirstn=1xnn!=ex1n=1nxn(n1)!=n=0(n+1)xn+1n!=n=1xn+1(n1)!+n=0xn+1n!=xn=0xn+1n!+xex=x2ex+xexn=1n3(n1)!xn=n=0(n+1)3n!xn+1=n=0n3+3n2+n+1n!xn+1=n=1n2(n1)!xn+1+3n=1n(n1)!xn+1+n=0xn+1(n1)!+n=0xn+1n!n=1n2(n1)!xn+1=n=0(n+1)2xn+2n!=n=0n2+2n+1n!xn+2=n=1n(n1)!xn+2+2n=11(n1)!xn+2+x2ex=n=0n+1n!xn+2+2n=0xn+3n!+x2ex=n=1xn+2(n1)!+x2ex+2x3ex+x2ex=n=0xn+3n!+2x2ex+2x3ex=x3ex+2x3ex+2x2ex=(3x3+2x2)exbecontinued
Answered by mind is power last updated on 09/Nov/19
use 1,x,x(x−1),x(x−1)(x−2),x(x−1)(x−2)(x−3)  as Base of IR^4 [X]  n^4 +2n^2 −3=an(n−1)(n−2)(n−3)+bn(n−1)(n−2)+cn(n−1)+dn+t  Σ_(n≥1) (n^4 +2n^2 −3)(x^n /(n!))=Σ_(n≥4) (a(x^n /((n−4)!)))+bΣ_(n≥4) (x^n /((n−3))!))+cΣ_(n≥4) (x^n /((n−2)!))+dΣ_(n≥4) (x^n /((n−1)!))+tΣ_(n≥4) (x^n /(n!))  +{Σ_(n=1) ^3 (n^4 +2n^2 −3)(x^n /(n!))=h(x)}  =ax^4 e^x +bx^3 (e^x −1)+cx^2 (e^x −1−x)+dx(e^x −1−x−(x^2 /2))+t(e^x −1−x−(x^2 /2)−(x^3 /6))+h(x)
use1,x,x(x1),x(x1)(x2),x(x1)(x2)(x3)asBaseofIR4[X]n4+2n23=an(n1)(n2)(n3)+bn(n1)(n2)+cn(n1)+dn+tn1(n4+2n23)xnn!=n4(axn(n4)!)+bn4xn(n3))!+cn4xn(n2)!+dn4xn(n1)!+tn4xnn!+{3n=1(n4+2n23)xnn!=h(x)}=ax4ex+bx3(ex1)+cx2(ex1x)+dx(ex1xx22)+t(ex1xx22x36)+h(x)

Leave a Reply

Your email address will not be published. Required fields are marked *