Menu Close

calculate-n-4-n-n-2-9-2-




Question Number 67010 by mathmax by abdo last updated on 21/Aug/19
calculate  Σ_(n=4) ^(+∞)     (n/((n^2 −9)^2 ))
calculaten=4+n(n29)2
Commented by mathmax by abdo last updated on 22/Aug/19
let S =Σ_(n=4) ^∞  (n/((n^2 −9)^2 )) ⇒ S =Σ_(n=4) ^∞  (n/((n−3)^2 (n+3)^2 ))  but  (n+3)^2 −(n−3)^2  =n^2 +6n+9−n^2 +6n−9 =12n ⇒  S =(1/(12))Σ_(n=4) ^∞  (((n+3)^2 −(n−3)^2 )/((n+3)^2 (n−3)^2 )) =(1/(12))Σ_(n=4) ^∞  (1/((n−3)^2 ))−(1/(12))Σ_(n=4) ^∞  (1/((n+3)^2 ))  =   (1/(12))Σ_(n=1) ^∞  (1/n^2 )−(1/(12))Σ_(n=7) ^∞  (1/n^2 )  =(1/(12))Σ_(n=1) ^∞  (1/n^2 )−(1/(12)){Σ_(n=1) ^∞  (1/n^2 )−1−(1/2^2 )−(1/3^2 )−(1/4^2 )−(1/5^2 )−(1/6^2 )}  =(1/(12))(1+(1/4)+(1/9) +(1/(16)) +(1/(25))+(1/(36)))
letS=n=4n(n29)2S=n=4n(n3)2(n+3)2but(n+3)2(n3)2=n2+6n+9n2+6n9=12nS=112n=4(n+3)2(n3)2(n+3)2(n3)2=112n=41(n3)2112n=41(n+3)2=112n=11n2112n=71n2=112n=11n2112{n=11n21122132142152162}=112(1+14+19+116+125+136)

Leave a Reply

Your email address will not be published. Required fields are marked *