Menu Close

calculate-pi-2-pi-3-xdx-3-cosx-




Question Number 68596 by Abdo msup. last updated on 14/Sep/19
calculate ∫_(π/2) ^(π/3)     ((xdx)/(3+cosx))
calculateπ2π3xdx3+cosx
Commented by mathmax by abdo last updated on 15/Sep/19
changeent tan((x/2))=t give  I =∫_(π/2) ^(π/3)  ((xdx)/(3+cosx)) =∫_1 ^(1/( (√3)))     ((2arctan(t))/(3+((1−t^2 )/(1+t^2 )))) ((2dt)/(1+t^2 ))  =∫_1 ^(1/( (√3)))   ((4arctan(t))/(3+3t^2  +1−t^2 ))dt =4 ∫_1 ^(1/( (√3)))   ((arctan(t))/(2t^2  +4))dt =2 ∫_1 ^(1/( (√3)))   ((arctan(t))/(t^2  +2))dt  let f(α) =∫_1 ^(1/( (√3)))     ((arctan(αt))/(t^(2 ) +2))dt   with α>0 ⇒  f^′ (α)=∫_1 ^(1/( (√3)))    (t/((α^2 t^2  +1)(t^2  +2)))dt  let decompose  F(t) =(t/((α^2 t^2  +1)(t^2  +2))) ⇒F(t)=((at+b)/(α^2 t^2  +1)) +((ct +d)/(t^2  +2))  F(−t)=−F(t) ⇒b=d=0 ⇒F(t) =((at)/(α^2 t^2  +1)) +((ct)/(t^2  +2))  lim_(t→+∞)  tF(t) =0 =(a/α^2 ) +c ⇒c=−(a/α^2 ) ⇒  F(t) =((at)/(α^2 t^2 +1))−((at)/(α^2 (t^2  +2)))  F(1) =(1/(3(α^2  +1))) =(a/(α^2  +1)) −(a/(3α^2 )) ⇒(1/3) =a−(a/(3α^2 ))(α^2  +1) ⇒  1 =3a−((a(α^(2 ) +1))/α^2 ) =(((3α^2 −α^2 −1)a)/α^2 ) ⇒(2α^2 −1)a =α^2  ⇒  a =(α^2 /(2α^2 −1)) ⇒F(t) =((α^2 t)/((2α^2 −1)(α^2 t^2  +1))) −(t/((2α^2 −1)(t^2  +2))) ⇒  f^′ (α) =(1/(2(2α^2 −1))) ∫_1 ^(1/( (√3)))    ((2α^2 t)/(α^2 t^2  +1))dt−(1/(2(2α^2 −1))) ∫_1 ^(1/( (√3)))    ((2tdt)/(t^2  +2))  =(1/(2(2α^2 −1)))[ln(α^2 t^2  +1)]_1 ^(1/( (√3)))   −(1/(2(2α^2 −1))) [ln(t^(2 ) +2)]_1 ^(1/( (√3)))   =(1/(2(2α^2 −1))){ln((α^2 /3)+1)−ln(α^2  +1)}−(1/(2(2α^2 −1))){ln((1/3)+2)−ln(3)}  ⇒f(α) =∫((ln(α^2 +3)−ln(α^2 +1)−ln(3))/(2(2α^2 −1)))dα  −(ln((7/3))−ln(3))∫  (dα/(2(2α^2 −1))) +c....becontinued....
changeenttan(x2)=tgiveI=π2π3xdx3+cosx=1132arctan(t)3+1t21+t22dt1+t2=1134arctan(t)3+3t2+1t2dt=4113arctan(t)2t2+4dt=2113arctan(t)t2+2dtletf(α)=113arctan(αt)t2+2dtwithα>0f(α)=113t(α2t2+1)(t2+2)dtletdecomposeF(t)=t(α2t2+1)(t2+2)F(t)=at+bα2t2+1+ct+dt2+2F(t)=F(t)b=d=0F(t)=atα2t2+1+ctt2+2limt+tF(t)=0=aα2+cc=aα2F(t)=atα2t2+1atα2(t2+2)F(1)=13(α2+1)=aα2+1a3α213=aa3α2(α2+1)1=3aa(α2+1)α2=(3α2α21)aα2(2α21)a=α2a=α22α21F(t)=α2t(2α21)(α2t2+1)t(2α21)(t2+2)f(α)=12(2α21)1132α2tα2t2+1dt12(2α21)1132tdtt2+2=12(2α21)[ln(α2t2+1)]11312(2α21)[ln(t2+2)]113=12(2α21){ln(α23+1)ln(α2+1)}12(2α21){ln(13+2)ln(3)}f(α)=ln(α2+3)ln(α2+1)ln(3)2(2α21)dα(ln(73)ln(3))dα2(2α21)+c.becontinued.

Leave a Reply

Your email address will not be published. Required fields are marked *