calculate-pi-2-pi-3-xdx-3-cosx- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 68596 by Abdo msup. last updated on 14/Sep/19 calculate∫π2π3xdx3+cosx Commented by mathmax by abdo last updated on 15/Sep/19 changeenttan(x2)=tgiveI=∫π2π3xdx3+cosx=∫1132arctan(t)3+1−t21+t22dt1+t2=∫1134arctan(t)3+3t2+1−t2dt=4∫113arctan(t)2t2+4dt=2∫113arctan(t)t2+2dtletf(α)=∫113arctan(αt)t2+2dtwithα>0⇒f′(α)=∫113t(α2t2+1)(t2+2)dtletdecomposeF(t)=t(α2t2+1)(t2+2)⇒F(t)=at+bα2t2+1+ct+dt2+2F(−t)=−F(t)⇒b=d=0⇒F(t)=atα2t2+1+ctt2+2limt→+∞tF(t)=0=aα2+c⇒c=−aα2⇒F(t)=atα2t2+1−atα2(t2+2)F(1)=13(α2+1)=aα2+1−a3α2⇒13=a−a3α2(α2+1)⇒1=3a−a(α2+1)α2=(3α2−α2−1)aα2⇒(2α2−1)a=α2⇒a=α22α2−1⇒F(t)=α2t(2α2−1)(α2t2+1)−t(2α2−1)(t2+2)⇒f′(α)=12(2α2−1)∫1132α2tα2t2+1dt−12(2α2−1)∫1132tdtt2+2=12(2α2−1)[ln(α2t2+1)]113−12(2α2−1)[ln(t2+2)]113=12(2α2−1){ln(α23+1)−ln(α2+1)}−12(2α2−1){ln(13+2)−ln(3)}⇒f(α)=∫ln(α2+3)−ln(α2+1)−ln(3)2(2α2−1)dα−(ln(73)−ln(3))∫dα2(2α2−1)+c….becontinued…. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Determine-nth-term-of-the-following-sequence-1-0-1-0-7-28-79-Next Next post: find-dx-x-3-4x-3- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.