Menu Close

Calculate-pi-6-0-cos-2-x-1-2sinx-dx-




Question Number 138703 by mathocean1 last updated on 16/Apr/21
Calculate  ∫_(−(π/6)) ^0 ((cos^2 x)/(1−2sinx))dx
Calculate0π6cos2x12sinxdx
Commented by SanyamJoshi last updated on 17/Apr/21
Calculate  ∫_(−(π/6)) ^0 ((cos^2 x)/(1−2sinx))dx
Calculate0π6cos2x12sinxdx
Answered by Mathspace last updated on 16/Apr/21
I=∫_(−(π/6)) ^0  ((cos^2 x)/(1−2sinx))dx  =_(x=−t) ∫_0 ^(π/6)  ((cos^2 t)/(1+2sint))dt  =∫_0 ^(π/6)  ((1−sin^2 t)/(1+2sint))dt  we have ((1−x^2 )/(2x+1))=−(1/4)((4x^2 −4)/(2x+1))  =−(1/4)(((4x^2 −1)/(2x+1))−(3/(2x+1)))  =−(1/4)(2x−1)+(3/(4(2x+1))) ⇒  I=−(1/4)∫_0 ^(π/6) (2sint−1)dt  +(3/4)∫_0 ^(π/6)  (dt/(2sint +1))(=J)  =−(1/2)[−cost]_0 ^(π/6) +(1/4).(π/6)  +(3/4)J  =−(1/2)(1−((√3)/2))+(π/(24))+(3/4)J  J=∫_0 ^(π/6)  (dt/(2sint +1))  =_(tan((t/2))=y)     ∫_0 ^(2−(√3))    ((2dy)/((1+y^2 )(2((2y)/(1+y^2 ))+1)))  =2∫_0 ^(2−(√3))     (dy/(4y+y^2  +1))  =2∫_0 ^(2−(√3))    (dy/(y^2 +4y+1))  Δ^′ =2^2 −1=3 ⇒y_1 =−2+(√3)  y_2 =−2−(√3) ⇒  2∫_0 ^(2−(√3))  (dy/((y−y_1 )(y−y_2 )))  =2(1/(2(√3)))∫_0 ^(2−(√3))   ((1/(y−y_1 ))−(1/(y−y_2 )))dy  =(1/( (√3)))[log∣((y+2−(√3))/(y+2+(√3)))∣]_0 ^(2−(√3))   =(1/( (√3))){log(((4−2(√3))/4))−log(((2−(√3))/(2+(√3))))}  I=−(1/2)+((√3)/4)+(π/(24))+((√3)/4){log(1−((√3)/2))−log(((2−(√3))/(2+(√3))))}
I=π60cos2x12sinxdx=x=t0π6cos2t1+2sintdt=0π61sin2t1+2sintdtwehave1x22x+1=144x242x+1=14(4x212x+132x+1)=14(2x1)+34(2x+1)I=140π6(2sint1)dt+340π6dt2sint+1(=J)=12[cost]0π6+14.π6+34J=12(132)+π24+34JJ=0π6dt2sint+1=tan(t2)=y0232dy(1+y2)(22y1+y2+1)=2023dy4y+y2+1=2023dyy2+4y+1Δ=221=3y1=2+3y2=232023dy(yy1)(yy2)=2123023(1yy11yy2)dy=13[logy+23y+2+3]023=13{log(4234)log(232+3)}I=12+34+π24+34{log(132)log(232+3)}

Leave a Reply

Your email address will not be published. Required fields are marked *