Menu Close

calculate-pi-6-pi-6-x-sinx-dx-




Question Number 65924 by mathmax by abdo last updated on 05/Aug/19
calculate ∫_(−(π/6)) ^(π/6)  (x/(sinx))dx
calculateπ6π6xsinxdx
Commented by mathmax by abdo last updated on 07/Aug/19
let I =∫_(−(π/6)) ^(π/6)  (x/(sinx))dx  let find approximate value we have  I =2∫_0 ^(π/6)  (x/(sinx))dx     but sinx =Σ_(n=0) ^∞  (((−1)^n x^(2n+1) )/((2n+1)!)) with radiusR=+∞  ⇒sinx =x−(x^3 /(3!)) +(x^5 /(5!))−....⇒x−(x^3 /(3!))≤sinx ≤x ⇒(1/x)≤(1/(sinx))≤(1/(x−(x^3 /6)))  ⇒1≤(x/(sinx))≤(1/(1−(x^2 /6)))   for x∈]0,(π/6)] ⇒∫_0 ^(π/6) 1dx ≤∫_0 ^(π/6)  (x/(sinx))dx≤∫_0 ^(π/6)  ((6dx)/(6−x^2 ))  (π/3)≤ 2∫_0 ^(π/6)   (x/(sinx))dx ≤12 ∫_0 ^(π/6)  (dx/(6−x^2 )) ⇒(π/3)≤I ≤12∫_0 ^(π/6)  (dx/(6−x^2 ))  ∫_0 ^(π/6)  (dx/(6−x^2 )) =−∫_0 ^(π/6)   (dx/((x−(√6))(x+(√6)))) =−(1/(2(√6)))∫_0 ^(π/6)   {(1/(x−(√6)))−(1/(x+(√6)))}dx  =−(1/(2(√6)))[ln∣((x−(√6))/(x+(√6)))∣]_0 ^(π/6)  =−(1/(2(√6)))ln∣(((π/6)−(√6))/((π/6)+(√6)))∣  =−(1/(2(√6)))ln∣((π−6(√6))/(π+6(√6)))∣ =(1/(2(√6)))ln(((π+6(√6))/(6(√6)−π))) ⇒(π/3)≤ I ≤(√6)ln(((6(√6)+π)/(6(√6)−π)))  let v_0 =(π/6) +((√6)/2)ln(((6(√6)+π)/(6(√6)−π)))  v_0 is a better approximation for I .
letI=π6π6xsinxdxletfindapproximatevaluewehaveI=20π6xsinxdxbutsinx=n=0(1)nx2n+1(2n+1)!withradiusR=+sinx=xx33!+x55!.xx33!sinxx1x1sinx1xx361xsinx11x26forx]0,π6]0π61dx0π6xsinxdx0π66dx6x2π320π6xsinxdx120π6dx6x2π3I120π6dx6x20π6dx6x2=0π6dx(x6)(x+6)=1260π6{1x61x+6}dx=126[lnx6x+6]0π6=126lnπ66π6+6=126lnπ66π+66=126ln(π+6666π)π3I6ln(66+π66π)letv0=π6+62ln(66+π66π)v0isabetterapproximationforI.