calculate-pi-6-pi-6-x-sinx-dx- Tinku Tara June 3, 2023 Integration FacebookTweetPin Question Number 65924 by mathmax by abdo last updated on 05/Aug/19 calculate∫−π6π6xsinxdx Commented by mathmax by abdo last updated on 07/Aug/19 letI=∫−π6π6xsinxdxletfindapproximatevaluewehaveI=2∫0π6xsinxdxbutsinx=∑n=0∞(−1)nx2n+1(2n+1)!withradiusR=+∞⇒sinx=x−x33!+x55!−….⇒x−x33!⩽sinx⩽x⇒1x⩽1sinx⩽1x−x36⇒1⩽xsinx⩽11−x26forx∈]0,π6]⇒∫0π61dx⩽∫0π6xsinxdx⩽∫0π66dx6−x2π3⩽2∫0π6xsinxdx⩽12∫0π6dx6−x2⇒π3⩽I⩽12∫0π6dx6−x2∫0π6dx6−x2=−∫0π6dx(x−6)(x+6)=−126∫0π6{1x−6−1x+6}dx=−126[ln∣x−6x+6∣]0π6=−126ln∣π6−6π6+6∣=−126ln∣π−66π+66∣=126ln(π+6666−π)⇒π3⩽I⩽6ln(66+π66−π)letv0=π6+62ln(66+π66−π)v0isabetterapproximationforI. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Find-x-in-the-equation-3-x-1-4-x-1-Next Next post: find-0-e-x-ln-1-x-2-dx-