Menu Close

calculate-sin72-o-sin148-o-sin140-o-sin36-o-sin74-o-sin70-o-




Question Number 76790 by john santu last updated on 30/Dec/19
calculate ((sin72^o +sin148^o +sin140^o )/(sin36^o ×sin74^o ×sin70^o )).
$${calculate}\:\frac{{sin}\mathrm{72}^{{o}} +{sin}\mathrm{148}^{{o}} +{sin}\mathrm{140}^{{o}} }{{sin}\mathrm{36}^{{o}} ×{sin}\mathrm{74}^{{o}} ×{sin}\mathrm{70}^{{o}} }. \\ $$
Commented by benjo 1/2 santuyy last updated on 31/Dec/19
sir mjs maybe your help me to solve this problem
$${sir}\:{mjs}\:{maybe}\:{your}\:{help}\:{me}\:{to}\:{solve}\:{this}\:{problem} \\ $$
Answered by benjo 1/2 santuyy last updated on 30/Dec/19
consider a+b+c=180^o  ,   sin a=sin(b+c)  sin 2a=−sin(2b+2c)=−2 sin (b+c) cos(b+c)  let a = 36^o  , b = 74^o  , c=70^(o )   sin 36^o  = sin 74^(o )  cos 70^o  +cos 74^o  sin 70^o
$${consider}\:{a}+{b}+{c}=\mathrm{180}^{{o}} \:,\: \\ $$$${sin}\:{a}={sin}\left({b}+{c}\right) \\ $$$${sin}\:\mathrm{2}{a}=−{sin}\left(\mathrm{2}{b}+\mathrm{2}{c}\right)=−\mathrm{2}\:{sin}\:\left({b}+{c}\right)\:{cos}\left({b}+{c}\right) \\ $$$${let}\:{a}\:=\:\mathrm{36}^{{o}} \:,\:{b}\:=\:\mathrm{74}^{{o}} \:,\:{c}=\mathrm{70}^{{o}\:} \\ $$$${sin}\:\mathrm{36}^{{o}} \:=\:{sin}\:\mathrm{74}^{{o}\:} \:{cos}\:\mathrm{70}^{{o}} \:+{cos}\:\mathrm{74}^{{o}} \:{sin}\:\mathrm{70}^{{o}} \\ $$$$ \\ $$
Answered by benjo 1/2 santuyy last updated on 30/Dec/19
4 sir?
$$\mathrm{4}\:{sir}? \\ $$
Answered by mind is power last updated on 27/Feb/20
sin(148)=sin(32)  sin(140)=sin(40)  sin(a)+sin(b)=2cos(((a−b)/2))sin(((a+b)/2))  sin(32)+sin(40)=2sin(36)cos(4)  sin(72)=2sin(36)cos(36)  sin(32)+sin(40)+sin(72)=2sin(36)cos(36)+2sin(36)cos(4)  =2sin(36)(cos(36)+cos(4))=2sin(36)(2cos(20)cos(16))  =cos(70)=sin(20),cos(16)=sin(74)  sin(72)+sin(148)+sin(140)=4sin(36)sin(74)sin(70)  ((sin(72)+sin(148)+sin(140))/(sin(36)sin(74)sin(70)))=4
$${sin}\left(\mathrm{148}\right)={sin}\left(\mathrm{32}\right) \\ $$$${sin}\left(\mathrm{140}\right)={sin}\left(\mathrm{40}\right) \\ $$$${sin}\left({a}\right)+{sin}\left({b}\right)=\mathrm{2}{cos}\left(\frac{{a}−{b}}{\mathrm{2}}\right){sin}\left(\frac{{a}+{b}}{\mathrm{2}}\right) \\ $$$${sin}\left(\mathrm{32}\right)+{sin}\left(\mathrm{40}\right)=\mathrm{2}{sin}\left(\mathrm{36}\right){cos}\left(\mathrm{4}\right) \\ $$$${sin}\left(\mathrm{72}\right)=\mathrm{2}{sin}\left(\mathrm{36}\right){cos}\left(\mathrm{36}\right) \\ $$$${sin}\left(\mathrm{32}\right)+{sin}\left(\mathrm{40}\right)+\mathrm{sin}\left(\mathrm{72}\right)=\mathrm{2sin}\left(\mathrm{36}\right)\mathrm{cos}\left(\mathrm{36}\right)+\mathrm{2sin}\left(\mathrm{36}\right)\mathrm{cos}\left(\mathrm{4}\right) \\ $$$$=\mathrm{2sin}\left(\mathrm{36}\right)\left(\mathrm{cos}\left(\mathrm{36}\right)+{cos}\left(\mathrm{4}\right)\right)=\mathrm{2}{sin}\left(\mathrm{36}\right)\left(\mathrm{2}{cos}\left(\mathrm{20}\right){cos}\left(\mathrm{16}\right)\right) \\ $$$$={cos}\left(\mathrm{70}\right)={sin}\left(\mathrm{20}\right),{cos}\left(\mathrm{16}\right)={sin}\left(\mathrm{74}\right) \\ $$$${sin}\left(\mathrm{72}\right)+\mathrm{sin}\left(\mathrm{148}\right)+{sin}\left(\mathrm{140}\right)=\mathrm{4}{sin}\left(\mathrm{36}\right){sin}\left(\mathrm{74}\right){sin}\left(\mathrm{70}\right) \\ $$$$\frac{{sin}\left(\mathrm{72}\right)+{sin}\left(\mathrm{148}\right)+\mathrm{sin}\left(\mathrm{140}\right)}{\mathrm{sin}\left(\mathrm{36}\right)\mathrm{sin}\left(\mathrm{74}\right)\mathrm{sin}\left(\mathrm{70}\right)}=\mathrm{4} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *