Menu Close

Calculate-the-lim-x-1-x-x-x-x-x-x-




Question Number 141077 by Opredador last updated on 15/May/21
 Calculate  the  lim_(x→1) ((((√x^x ) − (√x))/(x^x  − x))).
Calculatethelimx1(xxxxxx).
Answered by EDWIN88 last updated on 15/May/21
 lim_(x→1)  (((√x^x )−(√x))/(x^x −x)) = lim_(x→1)  (((√x^x )−(√x))/(((√x^x )+(√x) )((√x^x )−(√x))))  = lim_(x→1)  (1/( (√x^x ) +(√x))) = (1/2)
limx1xxxxxx=limx1xxx(xx+x)(xxx)=limx11xx+x=12
Commented by EDWIN88 last updated on 15/May/21
         Danke nochmal
Danke nochmal
Commented by Opredador last updated on 15/May/21
 Gracias
Gracias
Answered by mathmax by abdo last updated on 16/May/21
f(x)=((x^(x/2) −x^(1/2) )/(x^x −x)) changement x−1=t give  f(x)=f(1+t) =(((1+t)^((1+t)/2) −(1+t)^(1/2) )/((1+t)^(1+t) −(1+t)))  (t→0) we have  (1+t)^((1+t)/2) ∼1+(((1+t))/2)t  and (1+t)^(1/2)  ∼1+(t/2) ⇒  D ∼1+(t/2) +(t^2 /2)−1−(t/2)=(t^2 /2)  (1+t)^(1+t)  ∼1+(1+t)t ⇒N ∼1+(1+t)t−1−t =t^2  ⇒  f(1+t)∼(t^2 /(2t^2 )) →(1/2) ⇒lim_(x→1) f(x)=(1/2)
f(x)=xx2x12xxxchangementx1=tgivef(x)=f(1+t)=(1+t)1+t2(1+t)12(1+t)1+t(1+t)(t0)wehave(1+t)1+t21+(1+t)2tand(1+t)121+t2D1+t2+t221t2=t22(1+t)1+t1+(1+t)tN1+(1+t)t1t=t2f(1+t)t22t212limx1f(x)=12

Leave a Reply

Your email address will not be published. Required fields are marked *