Menu Close

calculate-U-n-1-n-n-arctan-x-1-x-2-dx-and-determine-lim-n-U-n-2-find-nature-of-U-n-




Question Number 66800 by mathmax by abdo last updated on 19/Aug/19
calculate U_n =∫_(1/n) ^n    ((arctan(x))/(1+x^2 ))dx  and determine lim_(n→+∞) U_n   2)find nature of Σ U_n
$${calculate}\:{U}_{{n}} =\int_{\frac{\mathrm{1}}{{n}}} ^{{n}} \:\:\:\frac{{arctan}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$${and}\:{determine}\:{lim}_{{n}\rightarrow+\infty} {U}_{{n}} \\ $$$$\left.\mathrm{2}\right){find}\:{nature}\:{of}\:\Sigma\:{U}_{{n}} \\ $$
Commented by mathmax by abdo last updated on 21/Aug/19
1) by parts  u^′ =(1/(1+x^2 )) and v=arctanx ⇒  U_n =[ arctan^2 x]_(1/n) ^n  −∫_(1/n) ^n arctan(x)(dx/(1+x^2 )) =arctan^2 (n)−arctan^2 ((1/n))  −U_n  ⇒2U_n =arctan^2 (n)−arctan^2 ((1/n)) ⇒  U_n =(1/2){arctan^2 (n)−arctan^2 ((1/n))} ⇒lim_(n→+∞) U_n =(1/2)((π/2))^2   =(π^2 /8)  2) we have lim_(n→+∞) U_n ≠0 ⇒Σ U_n  diverges.
$$\left.\mathrm{1}\right)\:{by}\:{parts}\:\:{u}^{'} =\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }\:{and}\:{v}={arctanx}\:\Rightarrow \\ $$$${U}_{{n}} =\left[\:{arctan}^{\mathrm{2}} {x}\right]_{\frac{\mathrm{1}}{{n}}} ^{{n}} \:−\int_{\frac{\mathrm{1}}{{n}}} ^{{n}} {arctan}\left({x}\right)\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} }\:={arctan}^{\mathrm{2}} \left({n}\right)−{arctan}^{\mathrm{2}} \left(\frac{\mathrm{1}}{{n}}\right) \\ $$$$−{U}_{{n}} \:\Rightarrow\mathrm{2}{U}_{{n}} ={arctan}^{\mathrm{2}} \left({n}\right)−{arctan}^{\mathrm{2}} \left(\frac{\mathrm{1}}{{n}}\right)\:\Rightarrow \\ $$$${U}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}}\left\{{arctan}^{\mathrm{2}} \left({n}\right)−{arctan}^{\mathrm{2}} \left(\frac{\mathrm{1}}{{n}}\right)\right\}\:\Rightarrow{lim}_{{n}\rightarrow+\infty} {U}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\pi}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{8}} \\ $$$$\left.\mathrm{2}\right)\:{we}\:{have}\:{lim}_{{n}\rightarrow+\infty} {U}_{{n}} \neq\mathrm{0}\:\Rightarrow\Sigma\:{U}_{{n}} \:{diverges}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *