Menu Close

calculate-U-n-k-1-n-k-k-1-




Question Number 73034 by mathmax by abdo last updated on 05/Nov/19
calculate U_n =Σ_(k=1) ^n  (k/((k+1)!))
$${calculate}\:{U}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{{k}}{\left({k}+\mathrm{1}\right)!} \\ $$
Commented by mathmax by abdo last updated on 06/Nov/19
we have U_n =Σ_(k=1) ^n  ((k+1−1)/((k+1)!)) =Σ_(k=1) ^n ((1/(k!))−(1/((k+1)!)))  =1−(1/(2!))+(1/(2!))−(1/(3!)) +....+(1/(n!))−(1/((n+1)!)) =1−(1/((n+1)!))
$${we}\:{have}\:{U}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{{k}+\mathrm{1}−\mathrm{1}}{\left({k}+\mathrm{1}\right)!}\:=\sum_{{k}=\mathrm{1}} ^{{n}} \left(\frac{\mathrm{1}}{{k}!}−\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right)!}\right) \\ $$$$=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}!}+\frac{\mathrm{1}}{\mathrm{2}!}−\frac{\mathrm{1}}{\mathrm{3}!}\:+….+\frac{\mathrm{1}}{{n}!}−\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)!}\:=\mathrm{1}−\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)!} \\ $$
Answered by mind is power last updated on 05/Nov/19
Un=Σ_(k=1) ^n (1/(k!))−(1/((k+1)!))=1−(1/((n+1)!))
$$\mathrm{Un}=\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{k}!}−\frac{\mathrm{1}}{\left(\mathrm{k}+\mathrm{1}\right)!}=\mathrm{1}−\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{1}\right)!} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *