Question Number 132496 by mathmax by abdo last updated on 14/Feb/21

Answered by mnjuly1970 last updated on 14/Feb/21
![by using dilogarithm function or fourier series... first method.. f(x)=x x∈[−π,π] f is artificial periodic function on [−π ,π] f(x)≈(a_0 /2)+Σ_(n=1) (a_n cos(nx)+b_n sin(nx)) a_n =(1/π)∫_(−π) ^( π) f(x)cos(nx)dx=0 b_n =(1/π)∫_(−π) ^( π) f(x)sin(nx)dx =(1/π)∫_(−π) ^( π) xsin(nx)dx=(2/π)∫_0 ^( π) xsin(nx)dx =(2/π){[−(x/n)cos(nx)]_(0 ) ^π +(1/n)∫_0 ^( π) cos(nx)dx 2(−1)^(n+1) (1/n) a_0 =(1/π)∫_(−π) ^( π) f(x)dx=0 x≈ Σ_(n=1) ^∞ ((2(−1)^(n+1) )/(n ))sin(nx) ∫xdx≈2Σ_(n=1) ^∞ ∫ (((−1)^(n+1) )/(n ))sin(nx)dx (x^2 /2)≈C+2Σ_(n=1) ^∞ (((−1)^n )/n^2 )cos(nx) x=π⇒ (π^2 /2)≈C+2Σ_(n=1) (1/n^2 ) C=(π^2 /2)−(π^2 /3)=(π^2 /6) (x^2 /2)=(π^2 /6)+2Σ_(n=1) ^∞ (((−1)^n )/n^2 )cos(nx) x=1 ⇒(1/2)−(π^2 /6)=2Σ_(n=1) ^∞ (((−1)^n )/n^2 ) Σ_(n=1) ^∞ (((−1)^n )/n^2 )=(1/4)−(π^2 /(12)) ...](https://www.tinkutara.com/question/Q132503.png)
Commented by mathmax by abdo last updated on 14/Feb/21

Commented by mnjuly1970 last updated on 15/Feb/21

Answered by mnjuly1970 last updated on 14/Feb/21

Answered by mathmax by abdo last updated on 14/Feb/21
![let ϕ(x)=x ,2π periodic odd ⇒ϕ(x)=Σ_(n=1) ^∞ a_n sin(nx) a_n =(1/π)∫_(−π) ^π x sin(nx)dx =(2/π)∫_0 ^π xsin(nx)dx ⇒ (π/2)a_n =[−(x/n)cos(nx)]_0 ^π +∫_0 ^π (1/n)cos(nx)dx =−(π/n)(−1)^n +(1/n^2 )[sin(nx)]_0 ^π =−(π/n)(−1)^n ⇒a_n =(2/π).(−(π/n))(−1)^n =−(2/n)(−1)^n ⇒ x=−2Σ_(n=1) ^∞ (((−1)^n )/n)sin(nx) ⇒(x^2 /2) =2Σ_(n=1) ^∞ (((−1)^n )/n^2 )cos(nx) +C x=0 ⇒0 =2 Σ_(n=1) ^∞ (((−1)^n )/n^2 ) +c =2.(2^(1−2) −1)ξ(2)+C =2(−(1/2))(π^2 /6) +C =−(π^2 /6) +C ⇒C =(π^2 /6) ⇒ (x^2 /2) =2Σ_(n=1) ^∞ (((−1)^n )/n^2 )cos(nx)+(π^2 /6) ⇒2Σ(....)=(x^2 /2)−(π^2 /6) ⇒ Σ_(n=1) ^∞ (((−1)^n )/n^2 )cos(nx) =(x^2 /4)−(π^2 /(12)) x=1 ⇒Σ_(n=1) ^∞ (((−1)^n )/n^2 )cos(n) =(1/4)−(π^2 /(12)) x=(π/3) ⇒Σ_(n=1) ^∞ (((−1)^n )/n^2 )cos(n(π/3))=(π^2 /(36))−(π^2 /(12)) =(π^2 /(36))−((3π^2 )/(36)) =−(π^2 /(18))](https://www.tinkutara.com/question/Q132524.png)
Commented by mnjuly1970 last updated on 15/Feb/21
