Menu Close

calculateA-n-n-1-1-n-n-2-cos-n-andB-n-n-1-1-n-n-2-cos-npi-3-




Question Number 132496 by mathmax by abdo last updated on 14/Feb/21
calculateA_n = Σ_(n=1) ^∞  (((−1)^n )/n^2 )cos(n) andB_n = Σ_(n=1) ^∞  (((−1)^n )/n^2 )cos(((nπ)/3))
calculateAn=n=1(1)nn2cos(n)andBn=n=1(1)nn2cos(nπ3)
Answered by mnjuly1970 last updated on 14/Feb/21
 by using dilogarithm function  or fourier series...  first  method..     f(x)=x         x∈[−π,π]      f is artificial periodic function  on [−π ,π]   f(x)≈(a_0 /2)+Σ_(n=1) (a_n cos(nx)+b_n sin(nx))  a_n =(1/π)∫_(−π) ^( π) f(x)cos(nx)dx=0  b_n =(1/π)∫_(−π) ^( π) f(x)sin(nx)dx        =(1/π)∫_(−π) ^( π) xsin(nx)dx=(2/π)∫_0 ^( π) xsin(nx)dx   =(2/π){[−(x/n)cos(nx)]_(0 ) ^π +(1/n)∫_0 ^( π) cos(nx)dx  2(−1)^(n+1) (1/n)  a_0 =(1/π)∫_(−π) ^( π) f(x)dx=0     x≈ Σ_(n=1) ^∞ ((2(−1)^(n+1) )/(n ))sin(nx)    ∫xdx≈2Σ_(n=1) ^∞ ∫ (((−1)^(n+1) )/(n ))sin(nx)dx  (x^2 /2)≈C+2Σ_(n=1) ^∞ (((−1)^n )/n^2 )cos(nx)    x=π⇒ (π^2 /2)≈C+2Σ_(n=1) (1/n^2 )      C=(π^2 /2)−(π^2 /3)=(π^2 /6)     (x^2 /2)=(π^2 /6)+2Σ_(n=1) ^∞ (((−1)^n )/n^2 )cos(nx)    x=1 ⇒(1/2)−(π^2 /6)=2Σ_(n=1) ^∞ (((−1)^n )/n^2 )        Σ_(n=1) ^∞ (((−1)^n )/n^2 )=(1/4)−(π^2 /(12))  ...
byusingdilogarithmfunctionorfourierseriesfirstmethod..f(x)=xx[π,π]fisartificialperiodicfunctionon[π,π]f(x)a02+n=1(ancos(nx)+bnsin(nx))an=1πππf(x)cos(nx)dx=0bn=1πππf(x)sin(nx)dx=1πππxsin(nx)dx=2π0πxsin(nx)dx=2π{[xncos(nx)]0π+1n0πcos(nx)dx2(1)n+11na0=1πππf(x)dx=0xn=12(1)n+1nsin(nx)xdx2n=1(1)n+1nsin(nx)dxx22C+2n=1(1)nn2cos(nx)x=ππ22C+2n=11n2C=π22π23=π26x22=π26+2n=1(1)nn2cos(nx)x=112π26=2n=1(1)nn2n=1(1)nn2=14π212
Commented by mathmax by abdo last updated on 14/Feb/21
thank you sir.
thankyousir.
Commented by mnjuly1970 last updated on 15/Feb/21
grateful...
grateful
Answered by mnjuly1970 last updated on 14/Feb/21
   second method    Σ_(n=1) ^∞ (((−1)^n )/n^2 )(((e^(in) +e^(−in) )/2))  =(1/2)Σ_(n=1) ^∞ (((−e^i )^n )/n^2 ) +(1/2)Σ_(n=1) ^∞ (((−e^(−i) )^n )/n^2 )  =(1/2)(li_2 (−e^i )+li_2 (−(1/e^i )))  =_(((−π^2 )/6)−(1/2)ln^2 (z)) ^(li_2 (−z)+li_2 (−(1/z))) (1/2)(((−π^2 )/6)−(1/2)ln^2 (e^i ))   =((−π^2 )/(12))−(1/4)(i^2 )=((−π^2 )/(12))+(1/4)  ....
secondmethodn=1(1)nn2(ein+ein2)=12n=1(ei)nn2+12n=1(ei)nn2=12(li2(ei)+li2(1ei))=li2(z)+li2(1z)π2612ln2(z)12(π2612ln2(ei))=π21214(i2)=π212+14.
Answered by mathmax by abdo last updated on 14/Feb/21
let ϕ(x)=x  ,2π periodic odd ⇒ϕ(x)=Σ_(n=1) ^∞  a_n sin(nx)  a_n =(1/π)∫_(−π) ^π  x sin(nx)dx =(2/π)∫_0 ^π  xsin(nx)dx ⇒  (π/2)a_n =[−(x/n)cos(nx)]_0 ^π +∫_0 ^π (1/n)cos(nx)dx =−(π/n)(−1)^n  +(1/n^2 )[sin(nx)]_0 ^π   =−(π/n)(−1)^n  ⇒a_n =(2/π).(−(π/n))(−1)^n  =−(2/n)(−1)^n  ⇒  x=−2Σ_(n=1) ^∞   (((−1)^n )/n)sin(nx)  ⇒(x^2 /2) =2Σ_(n=1) ^∞  (((−1)^n )/n^2 )cos(nx) +C  x=0 ⇒0 =2 Σ_(n=1) ^∞  (((−1)^n )/n^2 ) +c  =2.(2^(1−2) −1)ξ(2)+C  =2(−(1/2))(π^2 /6) +C =−(π^2 /6) +C ⇒C =(π^2 /6) ⇒  (x^2 /2) =2Σ_(n=1) ^∞  (((−1)^n )/n^2 )cos(nx)+(π^2 /6) ⇒2Σ(....)=(x^2 /2)−(π^2 /6) ⇒  Σ_(n=1) ^∞  (((−1)^n )/n^2 )cos(nx) =(x^2 /4)−(π^2 /(12))  x=1 ⇒Σ_(n=1) ^∞  (((−1)^n )/n^2 )cos(n) =(1/4)−(π^2 /(12))  x=(π/3) ⇒Σ_(n=1) ^∞  (((−1)^n )/n^2 )cos(n(π/3))=(π^2 /(36))−(π^2 /(12)) =(π^2 /(36))−((3π^2 )/(36)) =−(π^2 /(18))
letφ(x)=x,2πperiodicoddφ(x)=n=1ansin(nx)an=1πππxsin(nx)dx=2π0πxsin(nx)dxπ2an=[xncos(nx)]0π+0π1ncos(nx)dx=πn(1)n+1n2[sin(nx)]0π=πn(1)nan=2π.(πn)(1)n=2n(1)nx=2n=1(1)nnsin(nx)x22=2n=1(1)nn2cos(nx)+Cx=00=2n=1(1)nn2+c=2.(2121)ξ(2)+C=2(12)π26+C=π26+CC=π26x22=2n=1(1)nn2cos(nx)+π262Σ(.)=x22π26n=1(1)nn2cos(nx)=x24π212x=1n=1(1)nn2cos(n)=14π212x=π3n=1(1)nn2cos(nπ3)=π236π212=π2363π236=π218
Commented by mnjuly1970 last updated on 15/Feb/21
very nice sir max..
verynicesirmax..

Leave a Reply

Your email address will not be published. Required fields are marked *