calculatef-0-arctan-x-2-x-2-9-dx-with-real- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 74343 by mathmax by abdo last updated on 22/Nov/19 calculatef(α)=∫0∞arctan(αx2)x2+9dxwithαreal. Commented by mathmax by abdo last updated on 24/Nov/19 case1α>0wehave2f(α)=∫−∞+∞arctan(αx2)x2+9dx=x=3t∫−∞+∞arctan(9αt2)9(t2+1)(3)dt=13∫−∞+∞arctan(9αt2)t2+1dtx→arctan(9αt2)t2+1ispositive⇒∫−∞+∞(…)dt⩾0letW(z)=arctan(9αz2)z2+1⇒W(z)=arctan(9αz2)(z−i)(z+i)and∫−∞+∞W(z)dz=2iπRes(W,i)=2iπ∣arctan(9α(−1))∣2i=πarctan(9α)(butthisresulteedaproof)⇒f(α)=π6arctan(9α)case2α<0letα′=−α>0⇒f(α)=∫0∞arctan(−α′x2)x2+9dx=−∫0∞arctan(α′x2)x2+9=−π6arctan(9α′)=π6arctan(9α) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: I-2-sin-x-x-dx-dI-d-Next Next post: 2-pi-sec-2-x-tan-2-x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.