Menu Close

calculatef-0-arctan-x-2-x-2-9-dx-with-real-




Question Number 74343 by mathmax by abdo last updated on 22/Nov/19
calculatef(α)=  ∫_0 ^∞    ((arctan(αx^2 ))/(x^2  +9))dx   with α real.
calculatef(α)=0arctan(αx2)x2+9dxwithαreal.
Commented by mathmax by abdo last updated on 24/Nov/19
case 1   α>0   we have 2f(α)=∫_(−∞) ^(+∞)  ((arctan(αx^2 ))/(x^(2 ) +9))dx  =_(x=3t)    ∫_(−∞) ^(+∞ )  ((arctan(9αt^2 ))/(9(t^2 +1)))(3)dt =(1/3) ∫_(−∞) ^(+∞)  ((arctan(9αt^2 ))/(t^2  +1))dt  x→((arctan(9αt^2 ))/(t^2  +1)) is positive ⇒ ∫_(−∞) ^(+∞) (...)dt ≥0  let  W(z)=((arctan(9αz^2 ))/(z^2  +1)) ⇒W(z)=((arctan(9αz^2 ))/((z−i)(z+i))) and  ∫_(−∞) ^(+∞)   W(z)dz =2iπ  Res(W,i) =2iπ ((∣arctan(9α(−1))∣)/(2i))  =π arctan(9α)( but this result eed a proof) ⇒  f(α)=(π/6) arctan(9α)  case2  α<0   let α^′ =−α>0 ⇒f(α)=∫_0 ^∞   ((arctan(−α^′ x^2 ))/(x^2  +9))dx  =−∫_0 ^∞    ((arctan(α^′ x^2 ))/(x^2  +9)) =−(π/6) arctan(9α^′ ) =(π/6) arctan(9α)
case1α>0wehave2f(α)=+arctan(αx2)x2+9dx=x=3t+arctan(9αt2)9(t2+1)(3)dt=13+arctan(9αt2)t2+1dtxarctan(9αt2)t2+1ispositive+()dt0letW(z)=arctan(9αz2)z2+1W(z)=arctan(9αz2)(zi)(z+i)and+W(z)dz=2iπRes(W,i)=2iπarctan(9α(1))2i=πarctan(9α)(butthisresulteedaproof)f(α)=π6arctan(9α)case2α<0letα=α>0f(α)=0arctan(αx2)x2+9dx=0arctan(αx2)x2+9=π6arctan(9α)=π6arctan(9α)

Leave a Reply

Your email address will not be published. Required fields are marked *