Menu Close

calculste-f-a-1-x-2-x-2-a-2-dx-with-a-gt-0-




Question Number 69379 by mathmax by abdo last updated on 22/Sep/19
calculste f(a) =∫_(−∞) ^(+∞)    (((−1)^x^2  )/(x^2  +a^2 ))dx   with a>0
calculstef(a)=+(1)x2x2+a2dxwitha>0
Commented by mathmax by abdo last updated on 23/Sep/19
we have f(a) =∫_(−∞) ^(+∞)  (e^(iπx^2 ) /(x^2  +a^2 ))dx   let ϕ(z)=(e^(iπz^2 ) /(x^2  +a^2 ))  ϕ(z) =(e^(iπz^2 ) /((z−ia)(z+ia)))  residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,ia) =2iπ(e^(iπ(ia)^2 ) /(2ia)) =(π/a) e^(−iπa^2 )   =(π/a)(−1)^a^2   ⇒ f(a) =(π/a)(−1)^a^2
wehavef(a)=+eiπx2x2+a2dxletφ(z)=eiπz2x2+a2φ(z)=eiπz2(zia)(z+ia)residustheoremgive+φ(z)dz=2iπRes(φ,ia)=2iπeiπ(ia)22ia=πaeiπa2=πa(1)a2f(a)=πa(1)a2

Leave a Reply

Your email address will not be published. Required fields are marked *