Menu Close

calculte-0-1-x-4-x-2-dx-




Question Number 72391 by mathmax by abdo last updated on 28/Oct/19
calculte ∫_0 ^∞    (((−1)^([x]) )/(4+x^2 ))dx
$${calculte}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{\left[{x}\right]} }{\mathrm{4}+{x}^{\mathrm{2}} }{dx} \\ $$
Commented by mathmax by abdo last updated on 01/Nov/19
∫_0 ^∞    (((−1)^([x]) )/(x^2  +4))dx =Σ_(n=0) ^∞  ∫_n ^(n+1)  (((−1)^n )/(x^2  +4))dx  =Σ_(n=0) ^∞  (−1)^n ∫_n ^(n+1)  (dx/(x^2  +4)) but ∫_n ^(n+1)  (dx/(x^2  +4)) =_(x=2t)    ∫_(n/2) ^((n+1)/2) ((2dt)/(4t^2  +4))  =(1/2) ∫_(n/2) ^((n+1)/2)  (dt/(t^2  +1)) =(1/2)[arctant]_(n/2) ^((n+1)/2)  =(1/2){ arctan(((n+1)/2))−arctan((n/2))}  ⇒∫_0 ^∞  (((−1)^([x]) )/(x^2  +4))dx =(1/2)Σ_(n=0) ^∞  (−1)^n {arctan(((n+1)/2))−arctan((n/2))}  =(1/2)Σ_(n=0) ^∞ (−1)^n  arctan(((n+1)/2))−(1/2)Σ_(n=0) ^∞  (−1)^n  arctan((n/2))  ...be continued...
$$\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{\left[{x}\right]} }{{x}^{\mathrm{2}} \:+\mathrm{4}}{dx}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\int_{{n}} ^{{n}+\mathrm{1}} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{x}^{\mathrm{2}} \:+\mathrm{4}}{dx} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \int_{{n}} ^{{n}+\mathrm{1}} \:\frac{{dx}}{{x}^{\mathrm{2}} \:+\mathrm{4}}\:{but}\:\int_{{n}} ^{{n}+\mathrm{1}} \:\frac{{dx}}{{x}^{\mathrm{2}} \:+\mathrm{4}}\:=_{{x}=\mathrm{2}{t}} \:\:\:\int_{\frac{{n}}{\mathrm{2}}} ^{\frac{{n}+\mathrm{1}}{\mathrm{2}}} \frac{\mathrm{2}{dt}}{\mathrm{4}{t}^{\mathrm{2}} \:+\mathrm{4}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\frac{{n}}{\mathrm{2}}} ^{\frac{{n}+\mathrm{1}}{\mathrm{2}}} \:\frac{{dt}}{{t}^{\mathrm{2}} \:+\mathrm{1}}\:=\frac{\mathrm{1}}{\mathrm{2}}\left[{arctant}\right]_{\frac{{n}}{\mathrm{2}}} ^{\frac{{n}+\mathrm{1}}{\mathrm{2}}} \:=\frac{\mathrm{1}}{\mathrm{2}}\left\{\:{arctan}\left(\frac{{n}+\mathrm{1}}{\mathrm{2}}\right)−{arctan}\left(\frac{{n}}{\mathrm{2}}\right)\right\} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\left[{x}\right]} }{{x}^{\mathrm{2}} \:+\mathrm{4}}{dx}\:=\frac{\mathrm{1}}{\mathrm{2}}\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \left\{{arctan}\left(\frac{{n}+\mathrm{1}}{\mathrm{2}}\right)−{arctan}\left(\frac{{n}}{\mathrm{2}}\right)\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \:{arctan}\left(\frac{{n}+\mathrm{1}}{\mathrm{2}}\right)−\frac{\mathrm{1}}{\mathrm{2}}\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \:{arctan}\left(\frac{{n}}{\mathrm{2}}\right) \\ $$$$…{be}\:{continued}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *