Menu Close

calculte-sin-pix-2-x-2-2x-2-2-dx-




Question Number 137536 by Mathspace last updated on 03/Apr/21
calculte ∫_(−∞) ^∞  ((sin(πx^2 ))/((x^2 +2x+2)^2 ))dx
calcultesin(πx2)(x2+2x+2)2dx
Answered by mathmax by abdo last updated on 04/Apr/21
let f(a)=∫_(−∞) ^(+∞)  ((sin(πx^2 ))/(x^2  +2x+a))dx  with a>1  we have f^′ (a)=−∫_(−∞) ^(+∞)  ((sin(πx^2 ))/((x^2  +2x+a)^2 )) ⇒f^′ (2)=−∫_(−∞) ^(+∞)  ((sin(πx^2 ))/((x^2  +2x+2)^2 )) ⇒  ∫_(−∞) ^(+∞)  ((sin(πx^2 ))/((x^2  +2x+2)^2 ))=−f^′ (2)  we have f(a)=Im(∫_(−∞) ^(+∞)  (e^(iπx^2 ) /(x^2  +2x+a))dx) let ϕ(z)=(e^(iπz^2 ) /(z^2  +2z+a))  poles of ϕ?  Δ^′  =1−a<0 ⇒z_1 =−1+i(√(a−1))  and z_2 =−1−i(√(a−1))  ϕ(z)=(e^(iπz^2 ) /((z−z_1 )(z−z_2 )))  residus theorem ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,z_1 ) =2iπ×(e^(iπz_1 ^2 ) /(2i(√(a−1))))  =(π/( (√(a−1)))) e^(iπ{1−2i(√(a−1))−a+1))  =(π/( (√(a−1)))) e^(iπ{2−a−2i(√(a−1))})   =(π/( (√(a−1)))) e^(iπ(2−a)) .e^(2π(√(a−1))) =((πe^(2π(√(a−1))) )/( (√(a−1)))){cos(π(2−a))+isin(π(2−a))} ⇒  f(a)=−((π e^(2π(√(a−1))) )/( (√(a−1)))).sin(πa) ⇒  −f^′ (a) =π((e^(2π(√(a−1))) /( (√(a−1)))))^, sin(πa) +π^2 cos(πa).(e^(2π(√(a−1))) /( (√(a−1))))  but  ((e^(2π(√(a−1))) /( (√(a−1)))))^′  =((((2π)/(2(√(a−1))))e^(2π(√(a−1)))  .(√(a−1))−e^(2π(√(a−1))) .(1/(2(√(a−1)))))/(a−1))  =((πe^(2π(√(a−1))) −(1/(2(√(a−1))))e^(2π(√(a−1))) )/(a−1)) =(((2π(√(a−1))−1)e^(2π(√(a−1))) )/(2(a−1)(√(a−1)))) ⇒  f^′ (a)=−(π/2)(((2π(√(a−1))−1)e^(2π(√(a−1))) )/((a−1)(√(a−1)))) sin(πa) −π^2 cos(πa).(e^(2π(√(a−1))) /( (√(a−1))))  ⇒f^′ (2)=−(π/2)(((2π−1)e^(2π) )/1).0  −π^2  e^(2π)  =−π^2  e^(2π)  ⇒  ∫_(−∞) ^(+∞)  ((sin(πx^2 ))/((x^2  +2x+2)^2 )) =π^2  e^(2π)
letf(a)=+sin(πx2)x2+2x+adxwitha>1wehavef(a)=+sin(πx2)(x2+2x+a)2f(2)=+sin(πx2)(x2+2x+2)2+sin(πx2)(x2+2x+2)2=f(2)wehavef(a)=Im(+eiπx2x2+2x+adx)letφ(z)=eiπz2z2+2z+apolesofφ?Δ=1a<0z1=1+ia1andz2=1ia1φ(z)=eiπz2(zz1)(zz2)residustheorem+φ(z)dz=2iπRes(φ,z1)=2iπ×eiπz122ia1=πa1eiπ{12ia1a+1)=πa1eiπ{2a2ia1}=πa1eiπ(2a).e2πa1=πe2πa1a1{cos(π(2a))+isin(π(2a))}f(a)=πe2πa1a1.sin(πa)f(a)=π(e2πa1a1),sin(πa)+π2cos(πa).e2πa1a1but(e2πa1a1)=2π2a1e2πa1.a1e2πa1.12a1a1=πe2πa112a1e2πa1a1=(2πa11)e2πa12(a1)a1f(a)=π2(2πa11)e2πa1(a1)a1sin(πa)π2cos(πa).e2πa1a1f(2)=π2(2π1)e2π1.0π2e2π=π2e2π+sin(πx2)(x2+2x+2)2=π2e2π

Leave a Reply

Your email address will not be published. Required fields are marked *