Question Number 133369 by mnjuly1970 last updated on 21/Feb/21

Commented by Dwaipayan Shikari last updated on 21/Feb/21

Commented by mnjuly1970 last updated on 21/Feb/21

Answered by mathmax by abdo last updated on 21/Feb/21
![Φ=∫_1 ^2 (1/x)ln(((x+2)/(x+1)))dx we do the changement (1/x)=t ⇒ Φ=∫_1 ^(1/2) tln((((1/t)+2)/((1/t)+1)))(−(dt/t^2 )) =∫_(1/2) ^1 (1/t)ln(((1+2t)/(1+t)))dt =∫_(1/2) ^1 ((ln(1+2t))/t)dt−∫_(1/2) ^1 ((ln(1+t))/t)dt =H−K K =[lnt.ln(1+t)]_(1/2) ^1 −∫_(1/2) ^1 ((ln(t))/(t+1))dt =−ln((1/2))ln((3/2))−∫_(1/2) ^1 ((ln(t))/(1+t))dt and ∫_(1/2) ^1 ((ln(t))/(1+t))dt =∫_(1/2) ^1 ln(t)Σ_(n=0) ^∞ (−1)^n t^n dt =Σ_(n=0) ^∞ (−1)^n ∫_(1/2) ^1 t^n ln(t)dt=Σ_(n=0) ^∞ (−1)^n u_n u_n =[(t^(n+1) /(n+1))lnt]_(1/2) ^1 −∫_(1/2) ^1 (t^(n+1) /(n+1))(dt/t) =−ln((1/2))(1/((n+1)2^(n+1) ))−(1/(n+1))∫_(1/2) ^1 t^n dt =((ln(2))/((n+1)2^n ))−(1/((n+1)^2 ))(1−(1/2^(n+1) )) ⇒ ∫_(1/2) ^1 ((lnt)/(1+t))dt =ln2Σ_(n=0) ^∞ (((−1)^n )/((n+1)2^n ))−Σ_(n=0) ^∞ (((−1)^n )/((n+1)^2 ))+Σ_(n=0) ^∞ (((−1)^n )/((n+1)^2 .2^(n+1) )) rest calculus of those series... H=∫_(1/2) ^1 ((ln(1+2t))/t)dt =_(2t=y) 2 ∫_1 ^2 ((ln(1+y))/y)(dy/2) =_(y=u+1) ∫_o ^1 ((ln(u+2))/(u+1))du =∫_0 ^1 ln(2+u)Σ_(n=0) ^∞ (−1)^n u^n du =Σ_(n=0) ^∞ (−1)^n ∫_0 ^1 u^n ln(2+u)du =Σ_(n=0) ^∞ (−1)^n v_n v_n =[(u^(n+1) /(n+1))ln(2+u)]_0 ^1 −∫_0 ^1 (u^(n+1) /(n+1))(du/(2+u)) =((ln(3))/(n+1))−(1/(n+1))∫_0 ^1 (u^(n+1) /(u+2))du =....be continued....](https://www.tinkutara.com/question/Q133399.png)
Answered by mnjuly1970 last updated on 22/Feb/21
