Menu Close

calculus-2-1-2-ln-x-2-x-1-x-dx-




Question Number 133369 by mnjuly1970 last updated on 21/Feb/21
                calculus (2).....         𝛗=∫_1 ^( 2) (((ln(((x+2)/(x+1))))/x))dx =???
calculus(2)..ϕ=12(ln(x+2x+1)x)dx=???
Commented by Dwaipayan Shikari last updated on 21/Feb/21
((log^2 (2))/2)
log2(2)2
Commented by mnjuly1970 last updated on 21/Feb/21
correct...
correct
Answered by mathmax by abdo last updated on 21/Feb/21
Φ=∫_1 ^2 (1/x)ln(((x+2)/(x+1)))dx  we do the changement (1/x)=t ⇒  Φ=∫_1 ^(1/2) tln((((1/t)+2)/((1/t)+1)))(−(dt/t^2 )) =∫_(1/2) ^1  (1/t)ln(((1+2t)/(1+t)))dt  =∫_(1/2) ^1  ((ln(1+2t))/t)dt−∫_(1/2) ^1  ((ln(1+t))/t)dt =H−K  K =[lnt.ln(1+t)]_(1/2) ^1 −∫_(1/2) ^1  ((ln(t))/(t+1))dt  =−ln((1/2))ln((3/2))−∫_(1/2) ^1  ((ln(t))/(1+t))dt and  ∫_(1/2) ^1  ((ln(t))/(1+t))dt =∫_(1/2) ^1  ln(t)Σ_(n=0) ^∞  (−1)^n t^n  dt  =Σ_(n=0) ^∞ (−1)^n  ∫_(1/2) ^1  t^n ln(t)dt=Σ_(n=0) ^∞  (−1)^n  u_n   u_n =[(t^(n+1) /(n+1))lnt]_(1/2) ^1 −∫_(1/2) ^1  (t^(n+1) /(n+1))(dt/t) =−ln((1/2))(1/((n+1)2^(n+1) ))−(1/(n+1))∫_(1/2) ^1  t^n  dt  =((ln(2))/((n+1)2^n ))−(1/((n+1)^2 ))(1−(1/2^(n+1) )) ⇒  ∫_(1/2) ^1  ((lnt)/(1+t))dt =ln2Σ_(n=0) ^∞  (((−1)^n )/((n+1)2^n ))−Σ_(n=0) ^∞  (((−1)^n )/((n+1)^2 ))+Σ_(n=0) ^∞  (((−1)^n )/((n+1)^2 .2^(n+1) ))  rest calculus of those series...  H=∫_(1/2) ^1  ((ln(1+2t))/t)dt =_(2t=y)  2 ∫_1 ^2  ((ln(1+y))/y)(dy/2)  =_(y=u+1)     ∫_o ^1  ((ln(u+2))/(u+1))du =∫_0 ^1 ln(2+u)Σ_(n=0) ^∞ (−1)^n u^n du  =Σ_(n=0) ^∞ (−1)^n  ∫_0 ^1  u^n ln(2+u)du =Σ_(n=0) ^∞ (−1)^n v_n   v_n =[(u^(n+1) /(n+1))ln(2+u)]_0 ^1 −∫_0 ^1  (u^(n+1) /(n+1))(du/(2+u))  =((ln(3))/(n+1))−(1/(n+1))∫_0 ^1  (u^(n+1) /(u+2))du =....be continued....
Φ=121xln(x+2x+1)dxwedothechangement1x=tΦ=112tln(1t+21t+1)(dtt2)=1211tln(1+2t1+t)dt=121ln(1+2t)tdt121ln(1+t)tdt=HKK=[lnt.ln(1+t)]121121ln(t)t+1dt=ln(12)ln(32)121ln(t)1+tdtand121ln(t)1+tdt=121ln(t)n=0(1)ntndt=n=0(1)n121tnln(t)dt=n=0(1)nunun=[tn+1n+1lnt]121121tn+1n+1dtt=ln(12)1(n+1)2n+11n+1121tndt=ln(2)(n+1)2n1(n+1)2(112n+1)121lnt1+tdt=ln2n=0(1)n(n+1)2nn=0(1)n(n+1)2+n=0(1)n(n+1)2.2n+1restcalculusofthoseseriesH=121ln(1+2t)tdt=2t=y212ln(1+y)ydy2=y=u+1o1ln(u+2)u+1du=01ln(2+u)n=0(1)nundu=n=0(1)n01unln(2+u)du=n=0(1)nvnvn=[un+1n+1ln(2+u)]0101un+1n+1du2+u=ln(3)n+11n+101un+1u+2du=.becontinued.
Answered by mnjuly1970 last updated on 22/Feb/21

Leave a Reply

Your email address will not be published. Required fields are marked *