Menu Close

Calculus-I-1-2-1-1-x-2-1-x-4-3-4-dx-




Question Number 141691 by mnjuly1970 last updated on 22/May/21
                  ....Calculus(I)....                𝛗:=∫_(1/(2 )) ^( 1) (1/(x^2 (1+x^4 )^(3/4) ))dx=???
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:….{Calculus}\left({I}\right)…. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}:=\int_{\frac{\mathrm{1}}{\mathrm{2}\:}} ^{\:\mathrm{1}} \frac{\mathrm{1}}{{x}^{\mathrm{2}} \left(\mathrm{1}+{x}^{\mathrm{4}} \right)^{\frac{\mathrm{3}}{\mathrm{4}}} }{dx}=??? \\ $$
Answered by Dwaipayan Shikari last updated on 22/May/21
∫_(1/2) ^1 (1/(x^5 (1+(1/x^4 ))^(3/4) ))dx  =−(1/4)∫_(1/2) ^1 ((−(4/x^5 ) )/((1+(1/x^4 ))^(3/4) ))dx=[(1+(1/x^4 ))^(1/4) ]_1 ^(1/2) =(((17))^(1/4) −(2)^(1/4) )
$$\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \frac{\mathrm{1}}{{x}^{\mathrm{5}} \left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{4}} }\right)^{\mathrm{3}/\mathrm{4}} }{dx} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{4}}\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \frac{−\frac{\mathrm{4}}{{x}^{\mathrm{5}} }\:}{\left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{4}} }\right)^{\mathrm{3}/\mathrm{4}} }{dx}=\left[\left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{4}} }\right)^{\mathrm{1}/\mathrm{4}} \right]_{\mathrm{1}} ^{\mathrm{1}/\mathrm{2}} =\left(\sqrt[{\mathrm{4}}]{\mathrm{17}}−\sqrt[{\mathrm{4}}]{\mathrm{2}}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *