Menu Close

calculus-II-find-convergence-of-n-2-1-n-ln-3-n-ln-n-




Question Number 140671 by mnjuly1970 last updated on 11/May/21
              ...... calculus .... (II).....     find convergence of ::          𝛗:= Σ_(n=2) ^∞  (1/(n(ln^3 (n)+ln(n))))
calculus.(II)..findconvergenceof::ϕ:=n=21n(ln3(n)+ln(n))
Answered by mathmax by abdo last updated on 11/May/21
ϕ(x)=(1/(x(log^3 x +logx)))  (x>2) ⇒ϕ^′ (x)=−((log^3 x +logx +x(((3log^2 x)/x)+(1/x)))/(x^2 (log^3 x+logx)^2 ))  =−((log^3 x+logx+3log^2 x+1)/(x^2 (log^3 x+logx)^2 ))<0 ⇒ϕ is decreazing on[2,+∞[ ⇒  so Σ(...) and ∫_e ^∞    (dt/(t(log^3 t +logt))) are the same nature of convergence  Φ=∫_e ^∞  (dt/(t(log^3 t +logt))) =_(logt=x)   ∫_1 ^∞  ((e^x dx)/(e^x (x^3  +x)))  =∫_1 ^∞  (dx/(x^3  +x)) =∫_1 ^∞  (dx/(x(x^2  +1))) =∫_1 ^∞ ((1/x)−(x/(1+x^2 )))dx  =[ln∣(x/( (√(1+x^2 ))))∣]_1 ^∞ <+∞ ⇒Φ converges ⇒Σ u_n  converge...
φ(x)=1x(log3x+logx)(x>2)φ(x)=log3x+logx+x(3log2xx+1x)x2(log3x+logx)2=log3x+logx+3log2x+1x2(log3x+logx)2<0φisdecreazingon[2,+[soΣ()andedtt(log3t+logt)arethesamenatureofconvergenceΦ=edtt(log3t+logt)=logt=x1exdxex(x3+x)=1dxx3+x=1dxx(x2+1)=1(1xx1+x2)dx=[lnx1+x2]1<+ΦconvergesΣunconverge
Commented by mnjuly1970 last updated on 12/May/21
 great sir max ...
greatsirmax

Leave a Reply

Your email address will not be published. Required fields are marked *