Menu Close

Calculus-lim-1-pi-0-2pi-k-1-n-sin-kx-2-k-2-dx-




Question Number 144053 by mnjuly1970 last updated on 21/Jun/21
                      ........ Calculus........         Ω:=lim(1/π)∫_0 ^( 2π) (Σ_(k=1) ^n ((sin(kx))/( (√2^k ))))^2 dx=?
..Calculus..Ω:=lim1π02π(nk=1sin(kx)2k)2dx=?
Answered by mindispower last updated on 21/Jun/21
let n,m∈N  ∫_0 ^(2π) sin(nx)sin(mx)dx=(1/2)∫_0 ^(2π) (cos(m−n)x−cos(n+m)x)dx  =(1/2)∫_0 ^(2π) cos(m−n)xdx=0,n≠m  =π,n=m.......(1)  Ω=lim_(n→∞) .(1/π)∫_0 ^(2π) (Σ_(k=1) ^n ((sin(kx))/2^(k/2) ))^2 dx  =lim_(n→∞) .(1/π)∫_0 ^(2π) Σ_(k=1) ^n .Σ_(m=1) ^n ((sin(kx)sin(mx))/2^((k+m)/2) )dx  =lim_(n→∞)  .(1/π)Σ_(k=1) ^n Σ_(m=1) ^n (1/2^((m+k)/2) )∫_0 ^(2π) sin(kx)sin(mx)dx  withe(1)  Ω=lim_(n→∞) (1/π_ )Σ_(k=1) ^n Σ_(m=k) (1/2^k ).π  =lim_(n→∞) .(1/π)Σ_(k=1) ^n (π/2^k )=Σ_(k=1) ^n (1/2^k )=1  Ω=1
letn,mN02πsin(nx)sin(mx)dx=1202π(cos(mn)xcos(n+m)x)dx=1202πcos(mn)xdx=0,nm=π,n=m.(1)Ω=limn.1π02π(nk=1sin(kx)2k2)2dx=limn.1π02πnk=1.nm=1sin(kx)sin(mx)2k+m2dx=limn.1πnk=1nm=112m+k202πsin(kx)sin(mx)dxwithe(1)Ω=limn1πnk=1m=k12k.π=limn.1πnk=1π2k=nk=112k=1Ω=1
Commented by mnjuly1970 last updated on 21/Jun/21
       ......thanks alot mr power.....
thanksalotmrpower..
Commented by mindispower last updated on 22/Jun/21
pleasur
pleasur

Leave a Reply

Your email address will not be published. Required fields are marked *