Calculus-lim-1-pi-0-2pi-k-1-n-sin-kx-2-k-2-dx- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 144053 by mnjuly1970 last updated on 21/Jun/21 ……..Calculus……..Ω:=lim1π∫02π(∑nk=1sin(kx)2k)2dx=? Answered by mindispower last updated on 21/Jun/21 letn,m∈N∫02πsin(nx)sin(mx)dx=12∫02π(cos(m−n)x−cos(n+m)x)dx=12∫02πcos(m−n)xdx=0,n≠m=π,n=m…….(1)Ω=limn→∞.1π∫02π(∑nk=1sin(kx)2k2)2dx=limn→∞.1π∫02π∑nk=1.∑nm=1sin(kx)sin(mx)2k+m2dx=limn→∞.1π∑nk=1∑nm=112m+k2∫02πsin(kx)sin(mx)dxwithe(1)Ω=limn→∞1π∑nk=1∑m=k12k.π=limn→∞.1π∑nk=1π2k=∑nk=112k=1Ω=1 Commented by mnjuly1970 last updated on 21/Jun/21 ……thanksalotmrpower….. Commented by mindispower last updated on 22/Jun/21 pleasur Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Evaluate-x-sinh-x-dx-Next Next post: En-utilisant-la-transforme-de-laplace-Calculer-0-tsin-xt-a-2-t-2-dt-a-x-R- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.