Menu Close

Calculus-lim-x-x-2-2-x-2-x-x-x-x-x-




Question Number 138888 by mathdanisur last updated on 19/Apr/21
Calculus:  lim_(x→∞)  [ (x^2 /2^x ) + (2^x /(x!)) + ((x!)/x^x ) ] = ?
Calculus:limx[x22x+2xx!+x!xx]=?
Answered by mathmax by abdo last updated on 20/Apr/21
lim_(x→+∞) (x^2 /2^x )=lim_(x→+∞) x^2  2^(−x)  =0     x! ∼ x^x e^(−x) (√(2πx))( +∞) ⇒(2^x /(x!))∼(2^x /(x^x  e^(−x) (√(2πx)))) =((2^x  x^(−x)  e^x )/( (√(2πx))))  =((e^(xlog2)  .e^(−xlogx)  e^x )/( (√(2πx)))) =(e^(xlog2−xlogx+x) /( (√(2πx)))) =(e^(x(log2−logx +1)) /( (√(2πx)))) →0(x→+∞)  ((x!)/x^x )∼e^(−x) (√(2πx))→0 ⇒lim_(x→+∞) ((x^2 /2^x )+(2^x /(x!)) +((x!)/x^x ))=0
limx+x22x=limx+x22x=0x!xxex2πx(+)2xx!2xxxex2πx=2xxxex2πx=exlog2.exlogxex2πx=exlog2xlogx+x2πx=ex(log2logx+1)2πx0(x+)x!xxex2πx0limx+(x22x+2xx!+x!xx)=0
Commented by mathdanisur last updated on 20/Apr/21
thank you very much sir
thankyouverymuchsir
Commented by Rasheed.Sindhi last updated on 20/Apr/21
lim_(x→+∞) x^2  2^(−x) =∞.0 ( indeterminate form)≠0  Please sir explain.
limx+x22x=.0(indeterminateform)0Please\boldsymbolsirexplain.
Commented by mnjuly1970 last updated on 20/Apr/21
  lim_(x→∞) (x^2 /2^x ) =_(hopital) ^(∞/∞)  lim_(x→+∞) ((2x)/(2^x .ln(x)))      =lim_(x→∞) (2/(2^x .ln^2 (x)))=((→2)/(→∞)) →0
limxx22x=hopitallimx+2x2x.ln(x)=limx22x.ln2(x)=20
Commented by Rasheed.Sindhi last updated on 20/Apr/21
But mathmax sir didn′t use l′hopital  rule.He evaluated the limit directly!  Anyway you′re rivht and thanks sir!
Butmathmaxsirdidntuselhopitalrule.Heevaluatedthelimitdirectly!Anywayyourerivhtandthankssir!
Commented by Rasheed.Sindhi last updated on 20/Apr/21
Thαnks very much sir!
Thαnksverymuchsir!
Commented by mathmax by abdo last updated on 20/Apr/21
i use that e^x  defeat all polynom at ∞...!
iusethatexdefeatallpolynomat!
Commented by mathmax by abdo last updated on 20/Apr/21
let prove this result  f(x)=x^2  2^(−x)  =x^2 e^(−xlog2)   changement e^(−xlog2) =t(t→0) ⇒−xlog2=logt ⇒x=−((logt)/(log2)) ⇒  x^2  e^(−xlog2) =−((log^2 t)/(log^2 2))×t =−((tlog^2 t)/(log^2 2))  due to lim_(t→0) tlogt=0 ⇒  lim_(x→+∞) x^2 e^(−xlog2)  =0
letprovethisresultf(x)=x22x=x2exlog2changementexlog2=t(t0)xlog2=logtx=logtlog2x2exlog2=log2tlog22×t=tlog2tlog22duetolimt0tlogt=0limx+x2exlog2=0

Leave a Reply

Your email address will not be published. Required fields are marked *