Menu Close

Calculus-n-1-1-n-k-1-n-k-2-




Question Number 143603 by mnjuly1970 last updated on 16/Jun/21
             .....Calculus.....          Ω:=Σ_(n=1) ^∞ (1/(n^k (1+n)))   (k≥ 2) ......
..Calculus..Ω:=n=11nk(1+n)(k2)
Answered by Dwaipayan Shikari last updated on 16/Jun/21
Ω:=Σ_(n=1) ^∞ (1/(n^k (n+1)))=∫_0 ^1 Li_k (x)dx  =[xLi_k (x)]_0 ^1 −∫_0 ^1 Σ_(n=1) ^∞ n ((x^(n−1) .x)/n^k )dx  =Li_k (1)−∫_0 ^1 Σ_(n=1) ^∞ (x^n /n^(k−1) )dx=Li_k (1)−∫_0 ^1 Li_(k−1) (1)dx  =Li_k (1)−Li_(k−1) (1)+Li_(k−2) (1)−...Li_2 (1)  =ζ(k)−ζ(k−1)+ζ(k−2)−ζ(k−3)+...+(π^2 /6)  if k odd  or ζ(k)−ζ(k−1)+...−(π^2 /6)  if k even
Ω:=n=11nk(n+1)=01Lik(x)dx=[xLik(x)]0101n=1nxn1.xnkdx=Lik(1)01n=1xnnk1dx=Lik(1)01Lik1(1)dx=Lik(1)Lik1(1)+Lik2(1)Li2(1)=ζ(k)ζ(k1)+ζ(k2)ζ(k3)++π26ifkoddorζ(k)ζ(k1)+π26ifkeven
Commented by mnjuly1970 last updated on 16/Jun/21
     thank you so much...
thankyousomuch
Answered by mindispower last updated on 16/Jun/21
f(k)=Σ_(n≥1) (1/(n^k (n+1))),f(1)=1  f(k)+f(k−1)=Σ(1/n^k )=ζ(k),k≥1  (−1)^m f(m)+(−1)^m f(m−1)=(−1)^m ζ(m)  Σ_(m=2) ^k (−1)^m f(m)+(−1)^m f(m−1)=Σ_(m=2) ^k (−1)^m ζ(m)  (−1)^k f(k)+f(1)=Σ_(m=2) ^k (−1)^m ζ(m)  f(k)=(−1)^k Σ_(m=2) ^k (−1)^m ζ(m)+(−1)^(k−1) ,k≥2  f(1)=1
f(k)=n11nk(n+1),f(1)=1f(k)+f(k1)=Σ1nk=ζ(k),k1(1)mf(m)+(1)mf(m1)=(1)mζ(m)km=2(1)mf(m)+(1)mf(m1)=km=2(1)mζ(m)(1)kf(k)+f(1)=km=2(1)mζ(m)f(k)=(1)kkm=2(1)mζ(m)+(1)k1,k2f(1)=1
Commented by mnjuly1970 last updated on 16/Jun/21
 very nice ....
verynice.
Commented by mindispower last updated on 16/Jun/21
pleasur
pleasur

Leave a Reply

Your email address will not be published. Required fields are marked *