Question Number 143603 by mnjuly1970 last updated on 16/Jun/21

Answered by Dwaipayan Shikari last updated on 16/Jun/21
![Ω:=Σ_(n=1) ^∞ (1/(n^k (n+1)))=∫_0 ^1 Li_k (x)dx =[xLi_k (x)]_0 ^1 −∫_0 ^1 Σ_(n=1) ^∞ n ((x^(n−1) .x)/n^k )dx =Li_k (1)−∫_0 ^1 Σ_(n=1) ^∞ (x^n /n^(k−1) )dx=Li_k (1)−∫_0 ^1 Li_(k−1) (1)dx =Li_k (1)−Li_(k−1) (1)+Li_(k−2) (1)−...Li_2 (1) =ζ(k)−ζ(k−1)+ζ(k−2)−ζ(k−3)+...+(π^2 /6) if k odd or ζ(k)−ζ(k−1)+...−(π^2 /6) if k even](https://www.tinkutara.com/question/Q143604.png)
Commented by mnjuly1970 last updated on 16/Jun/21

Answered by mindispower last updated on 16/Jun/21

Commented by mnjuly1970 last updated on 16/Jun/21

Commented by mindispower last updated on 16/Jun/21
