Menu Close

calculus-prove-that-0-4-tan-x-tan-2-x-tan-x-tan-2-x-sin-x-dx-1-2-8-1-4-3-4-3-4-5-4-




Question Number 131211 by mnjuly1970 last updated on 02/Feb/21
            ...calculus...   prove that::   𝚽=∫_0 ^( (𝛑/4)) (((√(tan(x)+tan^2 (x)))/( (√(tan(x)βˆ’tan^2 (x))))) sin(x))dx       =(1/2)+((βˆšπ›‘)/8) (((πšͺ((1/4)))/(πšͺ((3/4))))βˆ’((πšͺ((3/4)))/(πšͺ((5/4)))))
$$\:\:\:\:\:\:\:\:\:\:\:\:…{calculus}… \\ $$$$\:{prove}\:{that}:: \\ $$$$\:\boldsymbol{\Phi}=\int_{\mathrm{0}} ^{\:\frac{\boldsymbol{\pi}}{\mathrm{4}}} \left(\frac{\sqrt{\boldsymbol{{tan}}\left(\boldsymbol{{x}}\right)+\boldsymbol{{tan}}^{\mathrm{2}} \left(\boldsymbol{{x}}\right)}}{\:\sqrt{\boldsymbol{{tan}}\left(\boldsymbol{{x}}\right)βˆ’\boldsymbol{{tan}}^{\mathrm{2}} \left(\boldsymbol{{x}}\right)}}\:\boldsymbol{{sin}}\left(\boldsymbol{{x}}\right)\right)\boldsymbol{{dx}}\: \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\boldsymbol{\pi}}}{\mathrm{8}}\:\left(\frac{\boldsymbol{\Gamma}\left(\frac{\mathrm{1}}{\mathrm{4}}\right)}{\boldsymbol{\Gamma}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)}βˆ’\frac{\boldsymbol{\Gamma}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)}{\boldsymbol{\Gamma}\left(\frac{\mathrm{5}}{\mathrm{4}}\right)}\right) \\ $$
Answered by Ar Brandon last updated on 02/Feb/21
Ξ¦=∫_0 ^(Ο€/4) (((√(tanx+tan^2 x))/( (√(tanxβˆ’tan^2 x))))sinx)dx=∫_0 ^(Ο€/4) (√((1+tanx)/(1βˆ’tanx)))βˆ™((tanx)/( (√(1+tan^2 x))))dx      =∫_0 ^(Ο€/4) (((1+tanx)tanx)/( (√((1βˆ’tan^2 x)(1+tan^2 x)))))dx, tanx=t β‡’dx=(dt/(1+t^2 ))      =∫_0 ^1 ((t+t^2 )/( (√((1βˆ’t^2 )(1+t^2 )))))βˆ™(dt/(1+t^2 ))      =∫_0 ^1 {(t/( (1+t^2 )(√((1βˆ’t^2 )(1+t^2 )))))+(t^2 /((1+t^2 )(√((1βˆ’t^2 )(1+t^2 )))))}dt      =(1/2)∫_0 ^1 (du/((1+u)(√(1βˆ’u^2 ))))+∫_0 ^1 ((u^(1/2) du)/((1+u)(√(1βˆ’u^2 ))))  (1/(u+1))=v β‡’βˆ’(du/((u+1)^2 ))=dv β‡’du=βˆ’(dv/v^2 )  Ξ¦=(1/2)∫_(1/2) ^1 (v/( (√((2/v)βˆ’(1/v^2 )))))βˆ™(dv/v^2 )+∫_0 ^1 ((u^(1/2) du)/((1+u)(√(1βˆ’u^2 ))))      =(1/2)∫_(1/2) ^1 (dv/( (√(2vβˆ’1))))+(1/2)∫_0 ^1 (p^(1/4) /((1+p^(1/2) )(√(1βˆ’p))))βˆ™(dp/p^(1/2) )      =1+(1/2)∫_0 ^1 (p^(βˆ’1/4) /((1+p^(1/2) )(√(1βˆ’p))))dp  ...
$$\Phi=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \left(\frac{\sqrt{\mathrm{tanx}+\mathrm{tan}^{\mathrm{2}} \mathrm{x}}}{\:\sqrt{\mathrm{tanx}βˆ’\mathrm{tan}^{\mathrm{2}} \mathrm{x}}}\mathrm{sinx}\right)\mathrm{dx}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \sqrt{\frac{\mathrm{1}+\mathrm{tanx}}{\mathrm{1}βˆ’\mathrm{tanx}}}\centerdot\frac{\mathrm{tanx}}{\:\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \mathrm{x}}}\mathrm{dx} \\ $$$$\:\:\:\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{\left(\mathrm{1}+\mathrm{tanx}\right)\mathrm{tanx}}{\:\sqrt{\left(\mathrm{1}βˆ’\mathrm{tan}^{\mathrm{2}} \mathrm{x}\right)\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \mathrm{x}\right)}}\mathrm{dx},\:\mathrm{tanx}=\mathrm{t}\:\Rightarrow\mathrm{dx}=\frac{\mathrm{dt}}{\mathrm{1}+\mathrm{t}^{\mathrm{2}} } \\ $$$$\:\:\:\:=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{t}+\mathrm{t}^{\mathrm{2}} }{\:\sqrt{\left(\mathrm{1}βˆ’\mathrm{t}^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)}}\centerdot\frac{\mathrm{dt}}{\mathrm{1}+\mathrm{t}^{\mathrm{2}} } \\ $$$$\:\:\:\:=\int_{\mathrm{0}} ^{\mathrm{1}} \left\{\frac{\mathrm{t}}{\:\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)\sqrt{\left(\mathrm{1}βˆ’\mathrm{t}^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)}}+\frac{\mathrm{t}^{\mathrm{2}} }{\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)\sqrt{\left(\mathrm{1}βˆ’\mathrm{t}^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)}}\right\}\mathrm{dt} \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{du}}{\left(\mathrm{1}+\mathrm{u}\right)\sqrt{\mathrm{1}βˆ’\mathrm{u}^{\mathrm{2}} }}+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{u}^{\mathrm{1}/\mathrm{2}} \mathrm{du}}{\left(\mathrm{1}+\mathrm{u}\right)\sqrt{\mathrm{1}βˆ’\mathrm{u}^{\mathrm{2}} }} \\ $$$$\frac{\mathrm{1}}{\mathrm{u}+\mathrm{1}}=\mathrm{v}\:\Rightarrowβˆ’\frac{\mathrm{du}}{\left(\mathrm{u}+\mathrm{1}\right)^{\mathrm{2}} }=\mathrm{dv}\:\Rightarrow\mathrm{du}=βˆ’\frac{\mathrm{dv}}{\mathrm{v}^{\mathrm{2}} } \\ $$$$\Phi=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{1}/\mathrm{2}} ^{\mathrm{1}} \frac{\mathrm{v}}{\:\sqrt{\frac{\mathrm{2}}{\mathrm{v}}βˆ’\frac{\mathrm{1}}{\mathrm{v}^{\mathrm{2}} }}}\centerdot\frac{\mathrm{dv}}{\mathrm{v}^{\mathrm{2}} }+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{u}^{\mathrm{1}/\mathrm{2}} \mathrm{du}}{\left(\mathrm{1}+\mathrm{u}\right)\sqrt{\mathrm{1}βˆ’\mathrm{u}^{\mathrm{2}} }} \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{1}/\mathrm{2}} ^{\mathrm{1}} \frac{\mathrm{dv}}{\:\sqrt{\mathrm{2v}βˆ’\mathrm{1}}}+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{p}^{\mathrm{1}/\mathrm{4}} }{\left(\mathrm{1}+\mathrm{p}^{\mathrm{1}/\mathrm{2}} \right)\sqrt{\mathrm{1}βˆ’\mathrm{p}}}\centerdot\frac{\mathrm{dp}}{\mathrm{p}^{\mathrm{1}/\mathrm{2}} } \\ $$$$\:\:\:\:=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{p}^{βˆ’\mathrm{1}/\mathrm{4}} }{\left(\mathrm{1}+\mathrm{p}^{\mathrm{1}/\mathrm{2}} \right)\sqrt{\mathrm{1}βˆ’\mathrm{p}}}\mathrm{dp} \\ $$$$… \\ $$
Commented by mnjuly1970 last updated on 02/Feb/21
grateful ..for your  effort  mr brandon...
$${grateful}\:..{for}\:{your}\:\:{effort} \\ $$$${mr}\:{brandon}… \\ $$
Commented by Ar Brandon last updated on 02/Feb/21
Thank you Sir ���� Got stucked unfortunately
Commented by mnjuly1970 last updated on 02/Feb/21
Commented by Ar Brandon last updated on 02/Feb/21
Nice��
Commented by mnjuly1970 last updated on 02/Feb/21
thank you master brandon   God  keep you...
$${thank}\:{you}\:{master}\:{brandon} \\ $$$$\:{God}\:\:{keep}\:{you}… \\ $$