Menu Close

CALCULUS-prove-that-n-1-1-n-1-n-1-2-2n-2log-2-golden-ratio-




Question Number 142970 by mnjuly1970 last updated on 08/Jun/21
              ..........CALCULUS...........         prove that::          ๐›—:=ฮฃ_(n=1) ^โˆž (((โˆ’1)^(nโˆ’1) ((nโˆ’1)!)^2 )/((2n)!))=2log^2 (ฯ•)      ฯ•=golden ratio....      .............
โ€ฆโ€ฆโ€ฆ.CALCULUSโ€ฆโ€ฆโ€ฆ..provethat::ฯ•:=โˆ‘โˆžn=1(โˆ’1)nโˆ’1((nโˆ’1)!)2(2n)!=2log2(ฯ†)ฯ†=goldenratioโ€ฆ.โ€ฆโ€ฆโ€ฆโ€ฆ.
Answered by Dwaipayan Shikari last updated on 08/Jun/21
ฮฃ_(n=1) ^โˆž ((((nโˆ’1)!)^2 )/((2n)!))(โˆ’1)^(nโˆ’1)   =ฮฃ_(n=1) ^โˆž ((ฮ“(n)ฮ“(n))/(2nฮ“(2n)))(โˆ’1)^(nโˆ’1) =(1/2)โˆซ_0 ^1 ฮฃ_(n=1) ^โˆž (โˆ’1)^(n+1) (1/n)x^(nโˆ’1) (1โˆ’x)^(nโˆ’1) dx  =(1/2)โˆซ_0 ^1 (1/(x(1โˆ’x)))log(1+x(1โˆ’x))dx  =(1/2)โˆซ_0 ^1 ((log(1+x(1โˆ’x)))/x)+((log(1+x(1โˆ’x)))/(1โˆ’x)) dx  =โˆซ_0 ^1 ((log(1+xโˆ’x^2 ))/x)dx       =โˆซ_0 ^1 ((log(x))/(xโˆ’(1/ฯ•)))+((log(x))/(x+ฯ•))dx=โˆ’(1/ฯ•)ฮฃ_(n=1) ^โˆž โˆซ_0 ^1 (xฯ•)^n log(x)+(1/ฯ•)โˆซ_0 ^1 ฮฃ_(n=1) ^โˆž (โˆ’xฯ•)^n log(x)dx  =(1/ฯ•){ฮฃ_(n=1) ^โˆž (ฯ•^n /((n+1)^2 ))+(1/ฯ•)ฮฃ_(n=1) ^โˆž (((โˆ’ฯ•)^n )/((n+1)^2 ))}  =(1/ฯ•^2 )(Li_2 (ฯ•)โˆ’ฯ•)โˆ’(1/ฯ•^2 )(Li_2 (โˆ’ฯ•)+ฯ•)  =(1/ฯ•^2 )(Li_2 (ฯ•)โˆ’Li_2 (โˆ’ฯ•))
โˆ‘โˆžn=1((nโˆ’1)!)2(2n)!(โˆ’1)nโˆ’1=โˆ‘โˆžn=1ฮ“(n)ฮ“(n)2nฮ“(2n)(โˆ’1)nโˆ’1=12โˆซ01โˆ‘โˆžn=1(โˆ’1)n+11nxnโˆ’1(1โˆ’x)nโˆ’1dx=12โˆซ011x(1โˆ’x)log(1+x(1โˆ’x))dx=12โˆซ01log(1+x(1โˆ’x))x+log(1+x(1โˆ’x))1โˆ’xdx=โˆซ01log(1+xโˆ’x2)xdx=โˆซ01log(x)xโˆ’1ฯ†+log(x)x+ฯ†dx=โˆ’1ฯ†โˆ‘โˆžn=1โˆซ01(xฯ†)nlog(x)+1ฯ†โˆซ01โˆ‘โˆžn=1(โˆ’xฯ†)nlog(x)dx=1ฯ†{โˆ‘โˆžn=1ฯ†n(n+1)2+1ฯ†โˆ‘โˆžn=1(โˆ’ฯ†)n(n+1)2}=1ฯ†2(Li2(ฯ†)โˆ’ฯ†)โˆ’1ฯ†2(Li2(โˆ’ฯ†)+ฯ†)=1ฯ†2(Li2(ฯ†)โˆ’Li2(โˆ’ฯ†))

Leave a Reply

Your email address will not be published. Required fields are marked *