Menu Close

call-lim-n-H-n-ln-n-proof-that-is-finite-and-0-1-




Question Number 2783 by 123456 last updated on 27/Nov/15
call γ:=lim_(n→+∞) H_n −ln n  proof that γ is finite and γ∈(0,1)
$$\mathrm{call}\:\gamma:=\underset{{n}\rightarrow+\infty} {\mathrm{lim}H}_{{n}} −\mathrm{ln}\:{n} \\ $$$$\mathrm{proof}\:\mathrm{that}\:\gamma\:\mathrm{is}\:\mathrm{finite}\:\mathrm{and}\:\gamma\in\left(\mathrm{0},\mathrm{1}\right) \\ $$
Commented by Filup last updated on 27/Nov/15
I am curious as to how to solve these  kinds of questions.
$$\mathrm{I}\:\mathrm{am}\:\mathrm{curious}\:\mathrm{as}\:\mathrm{to}\:\mathrm{how}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{these} \\ $$$$\mathrm{kinds}\:\mathrm{of}\:\mathrm{questions}. \\ $$
Commented by Filup last updated on 27/Nov/15
What does := mean?  Same as ≡ ?
$$\mathrm{What}\:\mathrm{does}\::=\:\mathrm{mean}? \\ $$$$\mathrm{Same}\:\mathrm{as}\:\equiv\:? \\ $$
Commented by 123456 last updated on 27/Nov/15
:= mean defined  ex:  f(x):=x  f(1)=1
$$:=\:\mathrm{mean}\:\mathrm{defined} \\ $$$$\mathrm{ex}: \\ $$$${f}\left({x}\right):={x} \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{1} \\ $$
Commented by Filup last updated on 27/Nov/15
Ah I see!
$${Ah}\:\mathrm{I}\:\mathrm{see}! \\ $$
Answered by prakash jain last updated on 27/Nov/15
γ_n =H_n −ln n  H_n =1+(1/2)+(1/3)+..+(1/n)=Σ_(i=1) ^n a_i   a_i =(1/i)  f(x)=(1/x) so that f(i)=a_i   Since f(x) is strictly decreasing +ve function.  From integral test for series  ∫_N ^(M+1) f(x)dx≤Σ_(n=N) ^M  f(n)≤f(N)+∫_N ^M f(x)dx  ...(A)  H_(n−1)  ≥∫_1 ^n (1/x)dx=ln n  So γ_n =H_n −ln n=(1/n)+H_(n−1) −ln n>0       ...(1)  γ_(n+1) =γ_n +(1/(n+1))−ln (n+1)+ln n  (1/(n+1))≤ln((n+1)/n) (comparing area of rectangles)  ⇒γ_(n+1) =γ_n −[ln ((n+1)/n)−(1/(n+1))]<γ_n   γ_n >0 and γ_(n+1) <γ_n   So lim_(n→∞) γ_n  exists and >0.  γ_1 =1−ln 1=1  ∵γ_(n+1) <γ_n   0<γ<1
$$\gamma_{{n}} =\mathrm{H}_{{n}} −\mathrm{ln}\:{n} \\ $$$$\mathrm{H}_{{n}} =\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+..+\frac{\mathrm{1}}{{n}}=\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{a}_{{i}} \\ $$$${a}_{{i}} =\frac{\mathrm{1}}{{i}} \\ $$$${f}\left({x}\right)=\frac{\mathrm{1}}{{x}}\:\mathrm{so}\:\mathrm{that}\:{f}\left({i}\right)={a}_{{i}} \\ $$$$\mathrm{Since}\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{strictly}\:\mathrm{decreasing}\:+\mathrm{ve}\:\mathrm{function}. \\ $$$$\mathrm{From}\:\mathrm{integral}\:\mathrm{test}\:\mathrm{for}\:\mathrm{series} \\ $$$$\int_{{N}} ^{{M}+\mathrm{1}} {f}\left({x}\right){dx}\leqslant\underset{{n}={N}} {\overset{{M}} {\sum}}\:{f}\left({n}\right)\leqslant{f}\left({N}\right)+\int_{{N}} ^{{M}} {f}\left({x}\right){dx}\:\:…\left({A}\right) \\ $$$$\mathrm{H}_{{n}−\mathrm{1}} \:\geqslant\int_{\mathrm{1}} ^{{n}} \frac{\mathrm{1}}{{x}}{dx}=\mathrm{ln}\:{n} \\ $$$${S}\mathrm{o}\:\gamma_{{n}} =\mathrm{H}_{{n}} −\mathrm{ln}\:{n}=\frac{\mathrm{1}}{{n}}+\mathrm{H}_{{n}−\mathrm{1}} −\mathrm{ln}\:{n}>\mathrm{0}\:\:\:\:\:\:\:…\left(\mathrm{1}\right) \\ $$$$\gamma_{{n}+\mathrm{1}} =\gamma_{{n}} +\frac{\mathrm{1}}{{n}+\mathrm{1}}−\mathrm{ln}\:\left({n}+\mathrm{1}\right)+\mathrm{ln}\:{n} \\ $$$$\frac{\mathrm{1}}{{n}+\mathrm{1}}\leqslant\mathrm{ln}\frac{{n}+\mathrm{1}}{{n}}\:\left({comparing}\:{area}\:{of}\:{rectangles}\right) \\ $$$$\Rightarrow\gamma_{{n}+\mathrm{1}} =\gamma_{{n}} −\left[\mathrm{ln}\:\frac{{n}+\mathrm{1}}{{n}}−\frac{\mathrm{1}}{{n}+\mathrm{1}}\right]<\gamma_{{n}} \\ $$$$\gamma_{{n}} >\mathrm{0}\:{and}\:\gamma_{{n}+\mathrm{1}} <\gamma_{{n}} \\ $$$$\mathrm{So}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\gamma_{{n}} \:{exists}\:\mathrm{and}\:>\mathrm{0}. \\ $$$$\gamma_{\mathrm{1}} =\mathrm{1}−\mathrm{ln}\:\mathrm{1}=\mathrm{1} \\ $$$$\because\gamma_{{n}+\mathrm{1}} <\gamma_{{n}} \\ $$$$\mathrm{0}<\gamma<\mathrm{1} \\ $$
Commented by RasheedAhmad last updated on 29/Nov/15
What is H_n ?
$${What}\:{is}\:\mathrm{H}_{{n}} ? \\ $$
Commented by 123456 last updated on 29/Nov/15
harmonic numbers
$$\mathrm{harmonic}\:\mathrm{numbers} \\ $$
Commented by Rasheed Soomro last updated on 29/Nov/15
THANKS!
$$\mathscr{THANKS}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *