Menu Close

call-lim-n-H-n-ln-n-proof-that-is-finite-and-0-1-




Question Number 2783 by 123456 last updated on 27/Nov/15
call γ:=lim_(n→+∞) H_n −ln n  proof that γ is finite and γ∈(0,1)
Double subscripts: use braces to clarifyproofthatγisfiniteandγ(0,1)
Commented by Filup last updated on 27/Nov/15
I am curious as to how to solve these  kinds of questions.
Iamcuriousastohowtosolvethesekindsofquestions.
Commented by Filup last updated on 27/Nov/15
What does := mean?  Same as ≡ ?
Whatdoes:=mean?Sameas?
Commented by 123456 last updated on 27/Nov/15
:= mean defined  ex:  f(x):=x  f(1)=1
:=meandefinedex:f(x):=xf(1)=1
Commented by Filup last updated on 27/Nov/15
Ah I see!
AhIsee!
Answered by prakash jain last updated on 27/Nov/15
γ_n =H_n −ln n  H_n =1+(1/2)+(1/3)+..+(1/n)=Σ_(i=1) ^n a_i   a_i =(1/i)  f(x)=(1/x) so that f(i)=a_i   Since f(x) is strictly decreasing +ve function.  From integral test for series  ∫_N ^(M+1) f(x)dx≤Σ_(n=N) ^M  f(n)≤f(N)+∫_N ^M f(x)dx  ...(A)  H_(n−1)  ≥∫_1 ^n (1/x)dx=ln n  So γ_n =H_n −ln n=(1/n)+H_(n−1) −ln n>0       ...(1)  γ_(n+1) =γ_n +(1/(n+1))−ln (n+1)+ln n  (1/(n+1))≤ln((n+1)/n) (comparing area of rectangles)  ⇒γ_(n+1) =γ_n −[ln ((n+1)/n)−(1/(n+1))]<γ_n   γ_n >0 and γ_(n+1) <γ_n   So lim_(n→∞) γ_n  exists and >0.  γ_1 =1−ln 1=1  ∵γ_(n+1) <γ_n   0<γ<1
γn=HnlnnHn=1+12+13+..+1n=ni=1aiai=1if(x)=1xsothatf(i)=aiSincef(x)isstrictlydecreasing+vefunction.FromintegraltestforseriesNM+1f(x)dxMn=Nf(n)f(N)+NMf(x)dx(A)Hn11n1xdx=lnnSoγn=Hnlnn=1n+Hn1lnn>0(1)γn+1=γn+1n+1ln(n+1)+lnn1n+1lnn+1n(comparingareaofrectangles)γn+1=γn[lnn+1n1n+1]<γnγn>0andγn+1<γnSolimnγnexistsand>0.γ1=1ln1=1γn+1<γn0<γ<1
Commented by RasheedAhmad last updated on 29/Nov/15
What is H_n ?
WhatisHn?
Commented by 123456 last updated on 29/Nov/15
harmonic numbers
harmonicnumbers
Commented by Rasheed Soomro last updated on 29/Nov/15
THANKS!
THANKS!

Leave a Reply

Your email address will not be published. Required fields are marked *