Menu Close

can-a-function-f-be-such-that-for-a-R-f-X-a-R-a-a-X-X-R-R-gt-0-lim-x-a-f-x-lim-x-a-f-x-lt-




Question Number 1093 by 123456 last updated on 12/Jun/15
can a function f be such that for a∈R  f:X/{a}→R,(a−δ,a+δ)∈X,X⊂R,δ∈R,δ>0  lim_(x→a)  f(x)=∞  lim_(x→a)  ∣f′(x)∣<∞
$$\mathrm{can}\:\mathrm{a}\:\mathrm{function}\:{f}\:\mathrm{be}\:\mathrm{such}\:\mathrm{that}\:\mathrm{for}\:{a}\in\mathbb{R} \\ $$$${f}:\mathrm{X}/\left\{{a}\right\}\rightarrow\mathbb{R},\left({a}−\delta,{a}+\delta\right)\in\mathrm{X},\mathrm{X}\subset\mathbb{R},\delta\in\mathbb{R},\delta>\mathrm{0} \\ $$$$\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:{f}\left({x}\right)=\infty \\ $$$$\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:\mid{f}'\left({x}\right)\mid<\infty \\ $$
Answered by prakash jain last updated on 12/Jun/15
Let us lim_(x→a) ∣f ′(x)∣=L<∞  lim_(x→a)  lim_(h→0) ((f(x−h)−f(x))/h)=L  Given f(a−h)<∞  If L is finite f(a) is finite:  contradiction.  So L is infinite or does not exist.
$$\mathrm{Let}\:\mathrm{us}\:\underset{{x}\rightarrow{a}} {\mathrm{lim}}\mid{f}\:'\left({x}\right)\mid={L}<\infty \\ $$$$\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{f}\left({x}−{h}\right)−{f}\left({x}\right)}{{h}}={L} \\ $$$$\mathrm{Given}\:{f}\left({a}−{h}\right)<\infty \\ $$$$\mathrm{If}\:{L}\:\mathrm{is}\:\mathrm{finite}\:{f}\left({a}\right)\:\mathrm{is}\:\mathrm{finite}:\:\:\mathrm{contradiction}. \\ $$$$\mathrm{So}\:\mathrm{L}\:\mathrm{is}\:\mathrm{infinite}\:\mathrm{or}\:\mathrm{does}\:\mathrm{not}\:\mathrm{exist}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *