Menu Close

can-i-ask-for-some-help-how-to-prove-this-1-2-lt-0-1-2-dx-1-x-3-lt-pi-6-




Question Number 134239 by ruwedkabeh last updated on 01/Mar/21
can i ask for some help?  how to prove this?  (1/2)<∫_0 ^(1/2) (dx/( (√(1−x^3 ))))<(π/6)
$${can}\:{i}\:{ask}\:{for}\:{some}\:{help}? \\ $$$${how}\:{to}\:{prove}\:{this}? \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}<\underset{\mathrm{0}} {\overset{\frac{\mathrm{1}}{\mathrm{2}}} {\int}}\frac{{dx}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{3}} }}<\frac{\pi}{\mathrm{6}} \\ $$
Commented by Dwaipayan Shikari last updated on 01/Mar/21
(1/( (√(1−x^3 ))))=Σ_(n=0) ^∞ ((((1/2))_n )/(n!))x^(3n)                 (a)_n =a(a+1)(a+2)...(a+n−1)  ∫_0 ^(1/2) (1/( (√(1−x^3 ))))dx=Σ_(n=0) ^∞ ((((1/2))_n )/(n!(3n+1)))((1/2))^(3n+1)   =(1/6)Σ_(n=0) ^∞ ((((1/2))_n )/(n!(n+(1/3))))((1/8))^n =(1/6)Σ_(n=0) ^∞ ((((1/2))_n ((1/3))_n )/(n!((4/3))_n ))((1/8))^n   =(1/6) _2 F_1 ((1/2),(1/3);(4/3);(1/8))  So (1/2)<(1/6) _2 F_1 ((1/2),(1/3);(4/3);(1/8))<(π/6)  3<_2 F_1 ((1/2),(1/3);(4/3);(1/8))<π
$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{3}} }}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)_{{n}} }{{n}!}{x}^{\mathrm{3}{n}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({a}\right)_{{n}} ={a}\left({a}+\mathrm{1}\right)\left({a}+\mathrm{2}\right)…\left({a}+{n}−\mathrm{1}\right) \\ $$$$\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{3}} }}{dx}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)_{{n}} }{{n}!\left(\mathrm{3}{n}+\mathrm{1}\right)}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{3}{n}+\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{6}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)_{{n}} }{{n}!\left({n}+\frac{\mathrm{1}}{\mathrm{3}}\right)}\left(\frac{\mathrm{1}}{\mathrm{8}}\right)^{{n}} =\frac{\mathrm{1}}{\mathrm{6}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)_{{n}} \left(\frac{\mathrm{1}}{\mathrm{3}}\right)_{{n}} }{{n}!\left(\frac{\mathrm{4}}{\mathrm{3}}\right)_{{n}} }\left(\frac{\mathrm{1}}{\mathrm{8}}\right)^{{n}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{6}}\:_{\mathrm{2}} {F}_{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{3}};\frac{\mathrm{4}}{\mathrm{3}};\frac{\mathrm{1}}{\mathrm{8}}\right) \\ $$$${So}\:\frac{\mathrm{1}}{\mathrm{2}}<\frac{\mathrm{1}}{\mathrm{6}}\:_{\mathrm{2}} {F}_{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{3}};\frac{\mathrm{4}}{\mathrm{3}};\frac{\mathrm{1}}{\mathrm{8}}\right)<\frac{\pi}{\mathrm{6}} \\ $$$$\mathrm{3}<_{\mathrm{2}} {F}_{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{3}};\frac{\mathrm{4}}{\mathrm{3}};\frac{\mathrm{1}}{\mathrm{8}}\right)<\pi \\ $$
Commented by ruwedkabeh last updated on 01/Mar/21
thank you so much
$${thank}\:{you}\:{so}\:{much} \\ $$
Answered by mr W last updated on 01/Mar/21
for 0≤x≤(1/2):  0<x^3 <x^2   1−x^2 <1−x^3 <1  (√(1−x^2 ))<(√(1−x^3 ))<1  1<(1/( (√(1−x^3 ))))<(1/( (√(1−x^2 ))))  ∫_0 ^(1/2) 1dx<∫_0 ^(1/2) (1/( (√(1−x^3 ))))dx<∫_0 ^(1/2) (1/( (√(1−x^2 ))))dx  1×(1/2)<∫_0 ^(1/2) (1/( (√(1−x^3 ))))dx<[sin^(−1) x]_0 ^(1/2)   (1/2)<∫_0 ^(1/2) (dx/( (√(1−x^3 ))))<(π/6)
$${for}\:\mathrm{0}\leqslant{x}\leqslant\frac{\mathrm{1}}{\mathrm{2}}: \\ $$$$\mathrm{0}<{x}^{\mathrm{3}} <{x}^{\mathrm{2}} \\ $$$$\mathrm{1}−{x}^{\mathrm{2}} <\mathrm{1}−{x}^{\mathrm{3}} <\mathrm{1} \\ $$$$\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }<\sqrt{\mathrm{1}−{x}^{\mathrm{3}} }<\mathrm{1} \\ $$$$\mathrm{1}<\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{3}} }}<\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} \\ $$$$\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \mathrm{1}{dx}<\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{3}} }}{dx}<\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{dx} \\ $$$$\mathrm{1}×\frac{\mathrm{1}}{\mathrm{2}}<\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{3}} }}{dx}<\left[\mathrm{sin}^{−\mathrm{1}} {x}\right]_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}<\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \frac{{dx}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{3}} }}<\frac{\pi}{\mathrm{6}} \\ $$
Commented by ruwedkabeh last updated on 01/Mar/21
thank you so much
$${thank}\:{you}\:{so}\:{much} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *