Menu Close

Can-we-prove-a-a-a-a-a-a-a-gt-1-




Question Number 5081 by FilupSmith last updated on 10/Apr/16
Can we prove:  a+a^a +a^a^a  +...=∞,  a>1
Canweprove:a+aa+aaa+=,a>1
Answered by Yozzii last updated on 11/Apr/16
Define the function f that maps   members of N+{0} to the n−th self−exponentiation  of a>1, satisfying f(n+1)=a^(f(n)) ,f(0)=a. For example  f(1)=a^(f(0)) =a^a  and f(2)=a^(f(1)) =a^a^a  .  Further define the sum S of the first  n outputs of f; i.e S(n)=Σ_(i=1) ^n f(i) or  S(n)=a+a^a +a^a^a  +...+a^(⋮^a    (n−1 times self−exponentiation of a)) .  Suppose for contradiction that   lim_(n→∞) S(n) is finite. Then, ∃N∈N such  that for all n>N, S(N+1)=S(N+2)=...=S(n)=... .  Now, S(n) satisfies the recurrence  equation S(n)−S(n−1)=f(n).  Since a>1, then f(n)>0 for all n.  ⇒S(n)−S(n−1)>0 or S(n)>S(n−1) for all n∈N.  But, by the condition of convergence  for sufficiently large n, S(n)=S(n−1).  This is a contradiction that indicates  lim_(n→∞) S(n) is nonfinite and in particular  S(n)>S(n−1) so that S(n) is divergent.  a+a^a +a^a^a  +... is infinitely large in  value.
DefinethefunctionfthatmapsmembersofN+{0}tothenthselfexponentiationofa>1,satisfyingf(n+1)=af(n),f(0)=a.Forexamplef(1)=af(0)=aaandf(2)=af(1)=aaa.FurtherdefinethesumSofthefirstnoutputsoff;i.eS(n)=ni=1f(i)orS(n)=a+aa+aaa++aa(n1timesselfexponentiationofa).SupposeforcontradictionthatlimnS(n)isfinite.Then,NNsuchthatforalln>N,S(N+1)=S(N+2)==S(n)=.Now,S(n)satisfiestherecurrenceequationS(n)S(n1)=f(n).Sincea>1,thenf(n)>0foralln.S(n)S(n1)>0orS(n)>S(n1)forallnN.But,bytheconditionofconvergenceforsufficientlylargen,S(n)=S(n1).ThisisacontradictionthatindicateslimnS(n)isnonfiniteandinparticularS(n)>S(n1)sothatS(n)isdivergent.a+aa+aaa+isinfinitelylargeinvalue.
Commented by FilupSmith last updated on 11/Apr/16
Amazing proof!!
Amazingproof!!

Leave a Reply

Your email address will not be published. Required fields are marked *