Can-we-prove-a-a-a-a-a-a-a-gt-1- Tinku Tara June 3, 2023 Arithmetic 0 Comments FacebookTweetPin Question Number 5081 by FilupSmith last updated on 10/Apr/16 Canweprove:a+aa+aaa+…=∞,a>1 Answered by Yozzii last updated on 11/Apr/16 DefinethefunctionfthatmapsmembersofN+{0}tothen−thself−exponentiationofa>1,satisfyingf(n+1)=af(n),f(0)=a.Forexamplef(1)=af(0)=aaandf(2)=af(1)=aaa.FurtherdefinethesumSofthefirstnoutputsoff;i.eS(n)=∑ni=1f(i)orS(n)=a+aa+aaa+…+a⋮a(n−1timesself−exponentiationofa).Supposeforcontradictionthatlimn→∞S(n)isfinite.Then,∃N∈Nsuchthatforalln>N,S(N+1)=S(N+2)=…=S(n)=….Now,S(n)satisfiestherecurrenceequationS(n)−S(n−1)=f(n).Sincea>1,thenf(n)>0foralln.⇒S(n)−S(n−1)>0orS(n)>S(n−1)foralln∈N.But,bytheconditionofconvergenceforsufficientlylargen,S(n)=S(n−1).Thisisacontradictionthatindicateslimn→∞S(n)isnonfiniteandinparticularS(n)>S(n−1)sothatS(n)isdivergent.a+aa+aaa+…isinfinitelylargeinvalue. Commented by FilupSmith last updated on 11/Apr/16 Amazingproof!! Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-136154Next Next post: Question-136156 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.