Menu Close

Can-you-evalate-A-a-b-f-x-dx-for-example-0-5-2-5-x-2-dx-




Question Number 2629 by Filup last updated on 24/Nov/15
Can you evalate:  A=∫_a ^( b) ⌊f(x)⌋dx    for example:  ∫_(0.5) ^( 2.5) ⌊x^2 ⌋dx
Canyouevalate:A=abf(x)dxforexample:0.52.5x2dx
Commented by Filup last updated on 24/Nov/15
∫_(0.5) ^( 2.5) ⌊x^2 ⌋dx=∫_(0.5) ^( 1) ⌊x^2 ⌋dx+∫_1 ^2 ⌊x^2 ⌋dx+∫_2 ^( 2.5) ⌊x^2 ⌋dx  ?
0.52.5x2dx=0.51x2dx+12x2dx+22.5x2dx?
Commented by Yozzi last updated on 24/Nov/15
Yes, but there is a way to solve  integrals like that using the   geometric interpretation of the  integral.
Yes,butthereisawaytosolveintegralslikethatusingthegeometricinterpretationoftheintegral.
Answered by Yozzi last updated on 24/Nov/15
For 0≤x<1⇒⌊x^2 ⌋=0  For 1≤x<(√2)⇒⌊x^2 ⌋=1  For (√2)≤x<(√3)⇒2≤x^2 <3⇒⌊x^2 ⌋=2  For (√3)≤x<2⇒3≤x^2 <4⇒⌊x^2 ⌋=3  For 2≤x<2.1⇒4≤x^2 <4.41⇒⌊x^2 ⌋=4  For 2.1≤x<2.23⇒4.41≤x^2 <4.9729⇒⌊x^2 ⌋=4  For 2.23≤x<(√5)⇒⌊x^2 ⌋=4  For (√5)≤x<(√6)⇒⌊x^2 ⌋=5  For (√6)≤x≤2.5⇒⌊x^2 ⌋=6    ∴∫_0 ^(2.5) ⌊x^2 ⌋dx=(1−0)×0+((√2)−1)×1+2((√3)−(√2))                               +3(2−(√3))+4(2.1−2)                               +4(2.23−2.1)+4((√5)−2.23)                               +5((√6)−(√5))+6(2.5−(√6))  ∫_0 ^(2.5) ⌊x^2 ⌋dx=(1)((√2)−1)+2((√3)−(√2))+3((√4)−(√3))+4((√5)−(√4))+5((√6)−(√5))+6(2.5−(√6))  I=∫_0 ^(2.5) ⌊x^2 ⌋dx=Σ_(r=1) ^5 r((√(r+1))−(√r))+6(2.5−(√6))  I=∫_(0.5) ^(2.5) ⌊x^2 ⌋dx as well since   ∫_0 ^(2.5) ⌊x^2 ⌋dx=∫_(0.5) ^(2.5) ⌊x^2 ⌋dx+∫_0 ^(0.5) ⌊x^2 ⌋dx  and ∫_0 ^(0.5) ⌊x^2 ⌋dx=0   (∵ for 0≤x<1⇒0≤x^2 <1⇒⌊x^2 ⌋=0).  ∫_0 ^(n/2) ⌊x^2 ⌋dx=Σ_(r=1) ^n r((√(r+1))−(√r))+(n+1)((n/2)−(√(n+1))) ??? (n≥3,n odd)
For0x<1x2=0For1x<2x2=1For2x<32x2<3x2=2For3x<23x2<4x2=3For2x<2.14x2<4.41x2=4For2.1x<2.234.41x2<4.9729x2=4For2.23x<5x2=4For5x<6x2=5For6x2.5x2=602.5x2dx=(10)×0+(21)×1+2(32)+3(23)+4(2.12)+4(2.232.1)+4(52.23)+5(65)+6(2.56)02.5x2dx=(1)(21)+2(32)+3(43)+4(54)+5(65)+6(2.56)I=02.5x2dx=5r=1r(r+1r)+6(2.56)I=0.52.5x2dxaswellsince02.5x2dx=0.52.5x2dx+00.5x2dxand00.5x2dx=0(for0x<10x2<1x2=0).0n2x2dx=nr=1r(r+1r)+(n+1)(n2n+1)???(n3,nodd)
Commented by Filup last updated on 24/Nov/15
Wow thats amazing! So crazy!
Wowthatsamazing!Socrazy!

Leave a Reply

Your email address will not be published. Required fields are marked *