Menu Close

Can-you-evaluate-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-




Question Number 2286 by Filup last updated on 14/Nov/15
Can you evaluate:  (1/1)+(1/(1+(1/1)))+(1/(1+(1/(1+(1/1)))))+...+(1/(1+(1/(...))))
Canyouevaluate:11+11+11+11+11+11++11+1
Commented by Yozzi last updated on 14/Nov/15
u_1 =(1/1), u_2 =(1/(1+(1/1)))=(1/(1+u_1 ))  u_3 =(1/(1+(1/(1+(1/1)))))=(1/(1+u_2 ))  u_4 =(1/(1+(1/(1+(1/(1+(1/1)))))))=(1/(1+u_3 ))  Recurrence equation for terms is  u_(n+1) =(1/(1+u_n )), u_1 =1,n≥1  u_1 =1  u_2 =(1/(1+u_1 ))=(1/2)  u_3 =(1/(1+u_2 ))=(1/(1+(1/2)))=(2/3)  u_4 =(1/(1+u_3 ))=(1/(1+(2/3)))=(3/5)  u_5 =(1/(1+u_4 ))=(1/(1+(3/5)))=(5/8)  u_6 =(1/(1+u_5 ))=(1/(1+(5/8)))=(8/(13))
u1=11,u2=11+11=11+u1u3=11+11+11=11+u2u4=11+11+11+11=11+u3Recurrenceequationfortermsisun+1=11+un,u1=1,n1u1=1u2=11+u1=12u3=11+u2=11+12=23u4=11+u3=11+23=35u5=11+u4=11+35=58u6=11+u5=11+58=813
Commented by Rasheed Soomro last updated on 17/Nov/15
 G^(OO) D  APPROACH!
GOODAPPROACH!
Commented by prakash jain last updated on 14/Nov/15
a_(n+1) =(1/(1+a_n ))  lim_(n→∞) a_n =((−1+(√5))/2)  Sum doesn′t converge.
an+1=11+anlimnan=1+52Sumdoesntconverge.
Answered by 123456 last updated on 15/Nov/15
by the coments  u_(n+1) =(1/(1+u_n )),u_0 =1  claim 1:  u_n =(F_n /F_(n+1) )    F_n  are Fibonnaci numbers  proof:  F_(n+2) =F_(n+1) +F_n   for n=1  u_1 =(F_1 /F_2 )=(1/1)=1 (T)  suppose its truth for n, lets proof for n+  u_(n+1) =(1/(1+u_n ))=(1/(1+(F_n /F_(n+1) )))  =(1/((F_n +F_(n+1) )/F_(n+1) ))=(F_(n+1) /F_(n+2) )  ■  −−−−−−−−−−−−−  S=Σu_n   a necesary condition to Σu_n  exist is  u_n →0 as n→∞ (but not sulficient, 1/n→0 but Σ1/n diverge)  but the sum seem to be divergent  (F_(n+1) /F_n )→ϕ=((1+(√5))/2)  u_n =(F_n /F_(n+1) )=(1/(F_(n+1) /F_n ))→(1/ϕ)=(((√5)−1)/2)
bythecomentsun+1=11+un,u0=1claim1:un=FnFn+1FnareFibonnacinumbersproof:Fn+2=Fn+1+Fnforn=1u1=F1F2=11=1(T)supposeitstruthforn,letsproofforn+un+1=11+un=11+FnFn+1=1Fn+Fn+1Fn+1=Fn+1Fn+2◼S=ΣunanecesaryconditiontoΣunexistisun0asn(butnotsulficient,1/n0butΣ1/ndiverge)butthesumseemtobedivergentFn+1Fnφ=1+52un=FnFn+1=1Fn+1Fn1φ=512
Commented by prakash jain last updated on 15/Nov/15
lim_(n→∞) u_n =((−1+(√5))/2)  or ((1+(√5))/2)?
limnun=1+52or1+52?
Commented by 123456 last updated on 15/Nov/15
(2/(1+(√5)))=((2(1−(√5)))/((1+(√5))(1−(√5))))=((2(1−(√5)))/(1−5))=  ((2(1−(√5)))/(−4))=(((√5)−1)/2)
21+5=2(15)(1+5)(15)=2(15)15=2(15)4=512

Leave a Reply

Your email address will not be published. Required fields are marked *