Menu Close

Can-you-Generalize-the-following-1-2-3-n-1-2-n-n-1-1-2-2-2-3-2-n-2-1-6-n-n-1-2n-1-1-3-2-3-3-3-n-3-1-2-n-n-1-2-




Question Number 2544 by Rasheed Soomro last updated on 22/Nov/15
Can you Generalize the following?  1+2+3+...+n=(1/2)(n)(n+1)  1^2 +2^2 +3^2 +...+n^2 =(1/6)(n)(n+1)(2n+1  1^3 +2^3 +3^3 +...+n^3 =[(1/2)(n)(n+1)]^2   ....   .....    .....  ... ..... ..... ......  ...  ...   .... ....      ...  ...  1^k +2^k +3^k +...+n^k =???
CanyouGeneralizethefollowing?1+2+3++n=12(n)(n+1)12+22+32++n2=16(n)(n+1)(2n+113+23+33++n3=[12(n)(n+1)]2...........1k+2k+3k++nk=???
Answered by Filup last updated on 23/Nov/15
Σ_(i=1) ^n i^k =H_n ^((−k))   Σ_(i=0) ^∞ (i+1)^k =ζ(−k)     Re(k)+1<0  Σ_(i=0) ^n (i+1)^k =ζ(−k)−ζ(−k, n+2)
ni=1ik=Hn(k)i=0(i+1)k=ζ(k)Re(k)+1<0ni=0(i+1)k=ζ(k)ζ(k,n+2)
Commented by Rasheed Soomro last updated on 22/Nov/15
I didn′t understand!  What are m, ζ(−k) and  ζ(−k, m+2) ?  Formula for 1^k +2^k +...+n^k  should involve only  n  and  k. Where did m come from?
Ididntunderstand!Whatarem,ζ(k)andζ(k,m+2)?Formulafor1k+2k++nkshouldinvolveonlynandk.Wheredidmcomefrom?
Commented by prakash jain last updated on 22/Nov/15
ζ is Riemann zeta function  ζ(z)=Σ_(n=1) ^∞ (1/n^z ), ℜ(z)>1
ζisRiemannzetafunctionζ(z)=n=11nz,(z)>1
Commented by Filup last updated on 23/Nov/15
Sorry, I did a direct copy from  Wolfram without adjusting for   your variables. I′ve fixed it to suite  your question!
Sorry,IdidadirectcopyfromWolframwithoutadjustingforyourvariables.Ivefixedittosuiteyourquestion!
Commented by Rasheed Soomro last updated on 23/Nov/15
Could you answer in simplified form. I mean   without using  riemann zeta notation?
Couldyouanswerinsimplifiedform.Imeanwithoutusingriemannzetanotation?

Leave a Reply

Your email address will not be published. Required fields are marked *