Menu Close

Can-you-please-show-me-how-to-solve-L-lim-n-x-n-n-




Question Number 6028 by FilupSmith last updated on 10/Jun/16
Can you please show me how to solve:  L=lim_(n→∞)  (x^n /(n!))
Canyoupleaseshowmehowtosolve:L=limnxnn!
Commented by Yozzii last updated on 10/Jun/16
Assume x>0.  n!≈(√(π(2n+(1/3))))n^n e^(−n)  for large n.  ∴ For large n,   (x^n /(n!))≈(((ex)^n )/( (√(π(2n+(1/3))))n^n ))  (x^n /(n!))≈(1/( (√(π(2n+(1/3))))))(((ex)/n))^n
Assumex>0.n!π(2n+13)nnenforlargen.Forlargen,xnn!(ex)nπ(2n+13)nnxnn!1π(2n+13)(exn)n
Commented by Yozzii last updated on 10/Jun/16
Let u=(1/n)  ∴(x^n /(n!))≈(((exu)^(1/u) )/( (√(π((2/u)+(1/3))))))    u→0 as n→∞  lim_(n→∞) (x^n /(n!))≈lim_(u→0) (((exu)^(1/u) (3u)^(0.5) )/( (√(π(6+u)))))  lim_(n→∞) (x^n /(n!))≈lim_(u→0) (((ex)^(1/u) u^((1/u)+0.5) (√3))/( (√(π(u+6)))))
Letu=1nxnn!(exu)1/uπ(2u+13)u0asnlimnxnn!limu0(exu)1/u(3u)0.5π(6+u)limnxnn!limu0(ex)1/uu1u+0.53π(u+6)

Leave a Reply

Your email address will not be published. Required fields are marked *