Menu Close

cAn-you-prove-the-chAin-role-




Question Number 11581 by Nayon last updated on 28/Mar/17
cAn you prove the chAin role??
$${cAn}\:{you}\:{prove}\:{the}\:{chAin}\:{role}?? \\ $$
Answered by linkelly0615 last updated on 28/Mar/17
yes∼
$${yes}\sim \\ $$
Commented by linkelly0615 last updated on 28/Mar/17
(BELOW)
$$\left({BELOW}\right) \\ $$
Answered by linkelly0615 last updated on 28/Mar/17
  set that [f(g(x))]′ exist    [f(g(x))]′=lim_(h→0) (([f(g(x+h))]−[f(g(x))])/h)  ∵g(x+h)=g(x)+hg′(x)+(h^2 /2)g′′(x)+......  ∴when “h” is small enough  then  g(x+h)≈g(x)+hg′(x)  ⇒[f(g(x+h))]≈[f(g(x)+hg′(x))]  if “hg′(x)” is small enough  then  [f(g(x)+hg′(x))]≈[f(g(x))+(hg′(x))f′(g(x))]  ...  ⇒  [f(g(x))]′=lim_(h→0) (([f(g(x+h))]−[f(g(x))])/h)  =lim_(h→0) (([f(g(x)+hg′(x))]−[f(g(x))])/h)  =lim_(h→0) (([f(g(x))+(hg′(x))f′(g(x))]−[f(g(x))])/h)  =f′(g(x))g′(x)
$$ \\ $$$${set}\:{that}\:\left[{f}\left({g}\left({x}\right)\right)\right]'\:{exist} \\ $$$$ \\ $$$$\left[{f}\left({g}\left({x}\right)\right)\right]'=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left[{f}\left({g}\left({x}+{h}\right)\right)\right]−\left[{f}\left({g}\left({x}\right)\right)\right]}{{h}} \\ $$$$\because{g}\left({x}+{h}\right)={g}\left({x}\right)+{hg}'\left({x}\right)+\frac{{h}^{\mathrm{2}} }{\mathrm{2}}{g}''\left({x}\right)+…… \\ $$$$\therefore{when}\:“{h}''\:{is}\:{small}\:{enough} \\ $$$${then} \\ $$$${g}\left({x}+{h}\right)\approx{g}\left({x}\right)+{hg}'\left({x}\right) \\ $$$$\Rightarrow\left[{f}\left({g}\left({x}+{h}\right)\right)\right]\approx\left[{f}\left({g}\left({x}\right)+{hg}'\left({x}\right)\right)\right] \\ $$$${if}\:“{hg}'\left({x}\right)''\:{is}\:{small}\:{enough} \\ $$$${then} \\ $$$$\left[{f}\left({g}\left({x}\right)+{hg}'\left({x}\right)\right)\right]\approx\left[{f}\left({g}\left({x}\right)\right)+\left({hg}'\left({x}\right)\right){f}'\left({g}\left({x}\right)\right)\right] \\ $$$$… \\ $$$$\Rightarrow \\ $$$$\left[{f}\left({g}\left({x}\right)\right)\right]'=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left[{f}\left({g}\left({x}+{h}\right)\right)\right]−\left[{f}\left({g}\left({x}\right)\right)\right]}{{h}} \\ $$$$=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left[{f}\left({g}\left({x}\right)+{hg}'\left({x}\right)\right)\right]−\left[{f}\left({g}\left({x}\right)\right)\right]}{{h}} \\ $$$$=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left[{f}\left({g}\left({x}\right)\right)+\left({hg}'\left({x}\right)\right){f}'\left({g}\left({x}\right)\right)\right]−\left[{f}\left({g}\left({x}\right)\right)\right]}{{h}} \\ $$$$={f}'\left({g}\left({x}\right)\right){g}'\left({x}\right)\:\: \\ $$
Commented by linkelly0615 last updated on 28/Mar/17
I think it might be what you want.
$${I}\:{think}\:{it}\:{might}\:{be}\:{what}\:{you}\:{want}. \\ $$
Commented by Nayon last updated on 29/Mar/17
Can you prove it any easy way   without using any series?
$${Can}\:{you}\:{prove}\:{it}\:{any}\:{easy}\:{way}\: \\ $$$${without}\:{using}\:{any}\:{series}? \\ $$
Commented by linkelly0615 last updated on 29/Mar/17
Commented by linkelly0615 last updated on 29/Mar/17
Maybe it is okay  if not ...I will try...  actually, I am trying to find   some diffrent ways to prove   that rule ...  (Including a crazy way)
$${Maybe}\:{it}\:{is}\:{okay} \\ $$$${if}\:{not}\:…{I}\:{will}\:{try}… \\ $$$$\mathrm{actually},\:{I}\:{am}\:{trying}\:{to}\:{find}\: \\ $$$${some}\:{diffrent}\:{ways}\:{to}\:{prove}\: \\ $$$${that}\:{rule}\:… \\ $$$$\left({Including}\:{a}\:{crazy}\:{way}\right) \\ $$$$ \\ $$
Commented by Nayon last updated on 29/Mar/17
it is not seen properlly.... please  comment a clear one..
$${it}\:{is}\:{not}\:{seen}\:{properlly}….\:{please} \\ $$$${comment}\:{a}\:{clear}\:{one}.. \\ $$
Commented by linkelly0615 last updated on 29/Mar/17
it can zoom in by your finger...
$${it}\:{can}\:{zoom}\:{in}\:{by}\:{your}\:{finger}… \\ $$$$ \\ $$
Commented by linkelly0615 last updated on 29/Mar/17

Leave a Reply

Your email address will not be published. Required fields are marked *