Menu Close

Can-you-solve-the-indefinite-integral-e-u-u-n-du-




Question Number 6042 by FilupSmith last updated on 10/Jun/16
Can you solve the indefinite integral:  ∫e^(−u) u^n du
Canyousolvetheindefiniteintegral:euundu
Commented by Yozzii last updated on 11/Jun/16
Define I(n)=∫e^(−u) u^n du (n≥0).  ∴ Integrating by parts gives  I(n)=−e^(−u) u^n −∫−ne^(−u) u^(n−1) du  I(n)=−e^(−u) u^n +n∫e^(−u) u^(n−1) du  I(n)=−e^(−u) u^n +nI(n−1)  I(n)=−e^(−u) u^n −ne^(−u) u^(n−1) +n(n−1)I(n−2)  I(n)=−e^(−u) u^n −ne^(−u) u^(n−1) −n(n−1)e^(−u) u^(n−2) +n(n−1)(n−2)I(n−3).  I(n)=−e^(−u) (((n!)/((n−0)!))u^(n−0) +((n!)/((n−1)!))u^(n−1) +((n!)/((n−2)!))u^(n−2) +((n!)/((n−3)!))u^(n−3) +...+((n!)/(2!))u^2 )+((n!)/(1!))I(1)  I(1)=∫e^(−u) udu=−e^(−u) u+∫e^(−u) du=−e^(−u) u−e^(−u) +C.  I(n)=−e^(−u) (((n!)/((n−0)!))u^(n−0) +((n!)/((n−1)!))u^(n−1) +((n!)/((n−3)!))u^(n−3) +...+((n!)/(2!))u^2 +((n!)/(1!))u^1 +((n!)/(0!))u^0 )+D  I(n)=D−e^(−u) n!(Σ_(r=0) ^n (u^(n−r) /((n−r)!)))
DefineI(n)=euundu(n0).IntegratingbypartsgivesI(n)=euunneuun1duI(n)=euun+neuun1duI(n)=euun+nI(n1)I(n)=euunneuun1+n(n1)I(n2)I(n)=euunneuun1n(n1)euun2+n(n1)(n2)I(n3).I(n)=eu(n!(n0)!un0+n!(n1)!un1+n!(n2)!un2+n!(n3)!un3++n!2!u2)+n!1!I(1)I(1)=euudu=euu+eudu=euueu+C.I(n)=eu(n!(n0)!un0+n!(n1)!un1+n!(n3)!un3++n!2!u2+n!1!u1+n!0!u0)+DI(n)=Deun!(nr=0unr(nr)!)
Commented by FilupSmith last updated on 11/Jun/16
is a D constant?
isaDconstant?
Commented by Yozzii last updated on 11/Jun/16
D=n!C where n=constant  and C=constant. You get that  after substituting the expression for I(1).
D=n!Cwheren=constantandC=constant.YougetthataftersubstitutingtheexpressionforI(1).
Commented by FilupSmith last updated on 11/Jun/16
I see, thank you!
Isee,thankyou!

Leave a Reply

Your email address will not be published. Required fields are marked *