Menu Close

caoculate-0-arctan-x-2-1-2x-2-1-dx-




Question Number 73179 by mathmax by abdo last updated on 07/Nov/19
caoculate ∫_0 ^∞   ((arctan(x^2 −1))/(2x^2  +1))dx
caoculate0arctan(x21)2x2+1dx
Commented by mathmax by abdo last updated on 07/Nov/19
residus method but need more proof let A =∫_0 ^∞  ((arctan(x^2 −1))/(2x^2  +1))dx  ⇒2A =∫_(−∞) ^(+∞)   ((arctan(x^2 −1))/(2x^2  +1))dx let W(z)=((arctan(z^2 −1))/(2z^2  +1)) ⇒  W(z)=((arctan(z^2 −1))/(2(z^2  +(1/2)))) =((arctan(z^2 −1))/(2(z−(i/( (√2))))(z+(i/( (√2) ))))) ⇒  ∫_(−∞) ^(+∞)  W(z)dz =2iπ Res(W,(i/( (√2)))) and   Res(W,(i/( (√2))))=lim_(z→(i/( (√2))))  (z−(i/( (√2))))W(z) =((arctan(((i/( (√2))))^2 −1))/(2(((2i)/( (√2))))))  =(√2)((arctan(−(1/2)−1))/(4i)) =−((√2)/(4i)) arctan((3/2)) ⇒  ∫_(−∞) ^(+∞)   W(z)dz =2iπ×(−((√2)/(4i)))arctan((3/2))=−((π(√2))/2) arctan((3/2))=2A  ⇒ A =−((π(√2))/4) arctan((3/2)) and if the graph of the function  x→((arctan(x^2 −1))/(2x^2  +1)) is on(x^′ ox) we take the absolute value...
residusmethodbutneedmoreproofletA=0arctan(x21)2x2+1dx2A=+arctan(x21)2x2+1dxletW(z)=arctan(z21)2z2+1W(z)=arctan(z21)2(z2+12)=arctan(z21)2(zi2)(z+i2)+W(z)dz=2iπRes(W,i2)andRes(W,i2)=limzi2(zi2)W(z)=arctan((i2)21)2(2i2)=2arctan(121)4i=24iarctan(32)+W(z)dz=2iπ×(24i)arctan(32)=π22arctan(32)=2AA=π24arctan(32)andifthegraphofthefunctionxarctan(x21)2x2+1ison(xox)wetaketheabsolutevalue
Answered by mind is power last updated on 07/Nov/19
∫_0 ^(+∞) ((arctan(x^2 −1))/(2x^2 +1))dx=a  ∫(dx/(2x^2 +1))=(1/( (√2)))arctan(x(√2))  a=[((arctan(x(√2)))/( (√2))).arctan(x^2 −1)]_0 ^(+∞) −(1/( (√2)))∫_0 ^(+∞) ((arctan(x(√2)).2xdx)/((x^2 −1)^2 +1))  a=(π^2 /(4(√2)))−(√2)∫_0 ^(+∞) ((arctan(x(√2))xdx)/((x^2 −1)^2 +1))=(π^2 /(4(√2)))−(1/( (√2)))∫_(−∞) ^(+∞) ((arctan(x(√2))xdx)/((x^2 −1)^2 +1))  on pose f(t)=∫_(−∞) ^(+∞) ((xarctan(tx))/((x^2 −1)^2 +1))dx  t≥0  f′(t)=∫_(−∞) ^(+∞) ((x^2 dx)/((1+x^2 t^2 )(x^2 −1−i)(x^2 −1+i)))  pols are x_0 =+(i/t),x^2 =1+i⇒x_2 =(2^(1/4) )e^((iπ)/8)   x=−1+i⇒x_1 =(2^(1/4) )e^((i3π)/8)   f′(t)=2iπ res(f,x_0 ,x_1 x_2 )  2iπres(f,(i/t))=2iπ.(((−1)/t^2 )/((2i)t((((1+t^2 )/t^2 ))^2 +1)))=((−πt)/((2t^4 +2t^2 +1)))  too be continued
0+arctan(x21)2x2+1dx=adx2x2+1=12arctan(x2)a=[arctan(x2)2.arctan(x21)]0+120+arctan(x2).2xdx(x21)2+1a=π24220+arctan(x2)xdx(x21)2+1=π24212+arctan(x2)xdx(x21)2+1onposef(t)=+xarctan(tx)(x21)2+1dxt0f(t)=+x2dx(1+x2t2)(x21i)(x21+i)polsarex0=+it,x2=1+ix2=(214)eiπ8x=1+ix1=(214)ei3π8f(t)=2iπres(f,x0,x1x2)2iπres(f,it)=2iπ.1t2(2i)t((1+t2t2)2+1)=πt(2t4+2t2+1)toobecontinued

Leave a Reply

Your email address will not be published. Required fields are marked *