caoculate-0-arctan-x-2-1-2x-2-1-dx- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 73179 by mathmax by abdo last updated on 07/Nov/19 caoculate∫0∞arctan(x2−1)2x2+1dx Commented by mathmax by abdo last updated on 07/Nov/19 residusmethodbutneedmoreproofletA=∫0∞arctan(x2−1)2x2+1dx⇒2A=∫−∞+∞arctan(x2−1)2x2+1dxletW(z)=arctan(z2−1)2z2+1⇒W(z)=arctan(z2−1)2(z2+12)=arctan(z2−1)2(z−i2)(z+i2)⇒∫−∞+∞W(z)dz=2iπRes(W,i2)andRes(W,i2)=limz→i2(z−i2)W(z)=arctan((i2)2−1)2(2i2)=2arctan(−12−1)4i=−24iarctan(32)⇒∫−∞+∞W(z)dz=2iπ×(−24i)arctan(32)=−π22arctan(32)=2A⇒A=−π24arctan(32)andifthegraphofthefunctionx→arctan(x2−1)2x2+1ison(x′ox)wetaketheabsolutevalue… Answered by mind is power last updated on 07/Nov/19 ∫0+∞arctan(x2−1)2x2+1dx=a∫dx2x2+1=12arctan(x2)a=[arctan(x2)2.arctan(x2−1)]0+∞−12∫0+∞arctan(x2).2xdx(x2−1)2+1a=π242−2∫0+∞arctan(x2)xdx(x2−1)2+1=π242−12∫−∞+∞arctan(x2)xdx(x2−1)2+1onposef(t)=∫−∞+∞xarctan(tx)(x2−1)2+1dxt⩾0f′(t)=∫−∞+∞x2dx(1+x2t2)(x2−1−i)(x2−1+i)polsarex0=+it,x2=1+i⇒x2=(214)eiπ8x=−1+i⇒x1=(214)ei3π8f′(t)=2iπres(f,x0,x1x2)2iπres(f,it)=2iπ.−1t2(2i)t((1+t2t2)2+1)=−πt(2t4+2t2+1)toobecontinued Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: lim-x-0-sin-x-tan-x-1-x-2-1-3-1-1-sin-x-1-Next Next post: calculate-0-lnx-x-1-3-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.