Menu Close

challenge-question-Let-R-m-n-R-m-n-1-R-m-1-n-1-if-R-1-1-19-R-2-1-9-R-3-1-2-and-n-s-t-R-4-n-0-a-Find-R-1-33-b-Find-R-1-n-




Question Number 136005 by Raxreedoroid last updated on 17/Mar/21
challenge question    Let R(m,n)=R(m,n−1)+R(m+1,n−1)  if R(1,1)=19,R(2,1)=9,R(3,1)=−2  and ∀n s.t. R(4,n)=0      a) Find R(1,33)    b) Find R(1,n)
$$\mathrm{challenge}\:\mathrm{question} \\ $$$$ \\ $$$$\mathrm{Let}\:{R}\left({m},{n}\right)={R}\left({m},{n}−\mathrm{1}\right)+{R}\left({m}+\mathrm{1},{n}−\mathrm{1}\right) \\ $$$$\mathrm{if}\:{R}\left(\mathrm{1},\mathrm{1}\right)=\mathrm{19},{R}\left(\mathrm{2},\mathrm{1}\right)=\mathrm{9},{R}\left(\mathrm{3},\mathrm{1}\right)=−\mathrm{2} \\ $$$$\mathrm{and}\:\forall{n}\:\mathrm{s}.\mathrm{t}.\:{R}\left(\mathrm{4},{n}\right)=\mathrm{0} \\ $$$$ \\ $$$$ \\ $$$$\left.{a}\right)\:\mathrm{Find}\:{R}\left(\mathrm{1},\mathrm{33}\right) \\ $$$$ \\ $$$$\left.{b}\right)\:\mathrm{Find}\:{R}\left(\mathrm{1},{n}\right) \\ $$$$ \\ $$
Commented by yutytfjh67ihd last updated on 28/Mar/21
  I've solved it!
$$ \\ $$I've solved it!
Commented by yutytfjh67ihd last updated on 28/Mar/21
Commented by yutytfjh67ihd last updated on 28/Mar/21
Commented by Raxreedoroid last updated on 28/Mar/21
Nice!  Consider section b
$$\mathrm{Nice}! \\ $$$$\mathrm{Consider}\:\mathrm{section}\:{b} \\ $$
Commented by Raxreedoroid last updated on 30/Mar/21
I see  but there is the other question  R(1,n)=?
$$\mathrm{I}\:\mathrm{see} \\ $$$$\mathrm{but}\:\mathrm{there}\:\mathrm{is}\:\mathrm{the}\:\mathrm{other}\:\mathrm{question} \\ $$$${R}\left(\mathrm{1},{n}\right)=? \\ $$
Commented by dhgt last updated on 04/May/21

Leave a Reply

Your email address will not be published. Required fields are marked *