Question Number 3146 by Rasheed Soomro last updated on 06/Dec/15
$$\mathcal{C}{hange}\:{the}\:{order}\:{of}\:{numbers}\:{on}\:{a}\:{clock}−{dial}\:{so}\:{that}\: \\ $$$${sum}\:{of}\:{any}\:{two}\:{numbers}\:\:{of}\:{consecutive}\:{positions}\:{may} \\ $$$${be}\:{prime}. \\ $$
Answered by prakash jain last updated on 06/Dec/15
$$\mathrm{1}\rightarrow\mathrm{2},\mathrm{4},\mathrm{6},\mathrm{12} \\ $$$$\mathrm{2}\rightarrow\mathrm{1},\mathrm{3},\mathrm{5},\mathrm{11} \\ $$$$\mathrm{3}\rightarrow\mathrm{2},\mathrm{4},\mathrm{8},\mathrm{10} \\ $$$$\mathrm{4}\rightarrow\mathrm{1},\mathrm{3},\mathrm{7},\mathrm{9} \\ $$$$\mathrm{5}\rightarrow\mathrm{2},\mathrm{6},\mathrm{8},\mathrm{12} \\ $$$$\mathrm{6}\rightarrow\mathrm{1},\mathrm{5},\mathrm{7},\mathrm{11} \\ $$$$\mathrm{7}\rightarrow\mathrm{4},\:\mathrm{6},\:\mathrm{10},\:\mathrm{12} \\ $$$$\mathrm{8}\rightarrow\mathrm{3},\:\mathrm{5},\mathrm{9},\mathrm{11} \\ $$$$\mathrm{9}\rightarrow\mathrm{2},\:\mathrm{4} \\ $$$$\mathrm{10}\rightarrow\mathrm{3},\:\mathrm{7},\:\mathrm{9} \\ $$$$\mathrm{11}\rightarrow\mathrm{2},\mathrm{6},\mathrm{8},\mathrm{12} \\ $$$$\mathrm{12}\rightarrow\mathrm{1},\mathrm{5},\mathrm{7},\mathrm{11} \\ $$$$ \\ $$$$\mathrm{9}\:\:\:\mathrm{10}\:\:\mathrm{3}\:\:\mathrm{2}\:\:\mathrm{1}\:\:\mathrm{4}\:\:\mathrm{7}\:\:\mathrm{6}\:\:\mathrm{5}\:\:\mathrm{12}\:\:\mathrm{11}\:\mathrm{8} \\ $$$$\mathrm{9}\rightarrow\mathrm{19}\:\:\:\:\:\mathrm{17} \\ $$$$\mathrm{10}\rightarrow\mathrm{19}\:\:\:\:\:\mathrm{13} \\ $$$$\mathrm{3}\rightarrow\mathrm{11}\:\:\:\:\:\:\mathrm{5} \\ $$$$\mathrm{2}\rightarrow\mathrm{5}\:\:\:\:\:\:\:\:\mathrm{3} \\ $$$$\mathrm{1}\rightarrow\mathrm{3}\:\:\:\:\:\:\:\:\mathrm{5} \\ $$$$\mathrm{4}\rightarrow\mathrm{5}\:\:\:\:\:\:\:\:\mathrm{11} \\ $$$$\mathrm{7}\rightarrow\mathrm{11}\:\:\:\:\:\mathrm{13} \\ $$$$\mathrm{6}\rightarrow\mathrm{13}\:\:\:\:\:\mathrm{11} \\ $$$$\mathrm{5}\rightarrow\mathrm{11}\:\:\:\:\:\mathrm{17} \\ $$$$\mathrm{12}\rightarrow\mathrm{17}\:\:\:\mathrm{23} \\ $$$$\mathrm{11}\rightarrow\mathrm{23}\:\:\:\mathrm{19} \\ $$$$\mathrm{8}\rightarrow\mathrm{19}\:\:\:\:\:\:\mathrm{17} \\ $$
Commented by prakash jain last updated on 06/Dec/15
$$\mathrm{Thanks}.\:\mathrm{Corrected}. \\ $$
Commented by RasheedAhmad last updated on 06/Dec/15
$$\mathcal{V}\:\:\mathcal{V}\:\mathcal{N}{ice}! \\ $$$${In}\:\mathrm{3}^{{rd}} \:{line}\:{I}\:{think}\:'\:\mathrm{1}\:'\:{seems} \\ $$$$\:{mistakenly} \\ $$$${included}. \\ $$$$\mathrm{3}\rightarrow\underset{−} {\mathrm{1}},\mathrm{2},\mathrm{4},\mathrm{8}\:\:\:\:;\mathrm{3}+\mathrm{1}=\mathrm{4}\:\in\mathbb{P} \\ $$
Commented by RasheedAhmad last updated on 06/Dec/15
$$\mathcal{H}{ow}\:{many}\:{solutions}\:{may}\:{be}? \\ $$