Menu Close

compare-log-2-3-and-log-3-5-




Question Number 1100 by malwaan last updated on 13/Jun/15
compare log_2 3 and log_3 5
comparelog23andlog35
Answered by 123456 last updated on 13/Jun/15
log_2 3=x⇔2^x =3   log_3 5=y⇔3^y =5  3<5  2^x <3^y   log_2 3=((log 3)/(log 2))>1  log_3 5=((log 5)/(log 3))>1  log 5>log 3>log 2  log^2 5>log 3log 5>log 2log 5  log 3log 5>log^2 3>log 2log 3  log 2log 5>log 2log 3>log^2 2  log 3log 5>log^2 3>log 2log 3  log 3log 5>log 2log 5>log 2log 3  ...........  2^x <3^y   x<log_2 3^y =ylog_2 3=log_3 5log_2 3                     =((log 5)/(log 3))∙((log 3)/(log 2))=((log 5)/(log 2))=log_2 5  y>log_3 2^x =xlog_3 2=log_2 3log_3 2                     =((log 3)/(log 2))∙((log 2)/(log 3))=1  1<log_2 3<log_2 5  1<log_3 5  log_2 5>log_3 5>1
log23=x2x=3log35=y3y=53<52x<3ylog23=log3log2>1log35=log5log3>1log5>log3>log2log25>log3log5>log2log5log3log5>log23>log2log3log2log5>log2log3>log22log3log5>log23>log2log3log3log5>log2log5>log2log3..2x<3yx<log23y=ylog23=log35log23=log5log3log3log2=log5log2=log25y>log32x=xlog32=log23log32=log3log2log2log3=11<log23<log251<log35log25>log35>1
Commented by malwaan last updated on 14/Jun/15
where is the answer ?  Is log_2 3 > or < log_3 5 ?
whereistheanswer?Islog23>or<log35?
Answered by prakash jain last updated on 14/Jun/15
9>8  3>2(√2)=2^(3/2)   log_2 3>1.5   ...(a)  25<27  5<3(√3)=3^(3/2)   log_3 5<1.5    ...(b)  From (a) and (b)  log_2 3>log_3 5
9>83>22=23/2log23>1.5(a)25<275<33=33/2log35<1.5(b)From(a)and(b)log23>log35
Commented by prakash jain last updated on 15/Jun/15
log_(20) 80=((log 80)/(log 20))=((1+3log 2)/(1+log 2))  log _(80) 640=((log 640)/(log 80))=((1+6log 2)/(1+3log 2))  log 2=x   log_(20) 80−log_(80) 640  [(1+3x)^2 −(1+x)(1+6x)]÷[(1+x)(1+3x)]  Ignoring Denominator since it does contribute to sign  2>1⇒log 2>0  =1+6x+9x^2 −1−7x−6x^2   =3x^2 −x  =x(3x−1)  Sign will be >0 if x>(1/3)  x=log 2  10>8  10^(1/3) >2  (1/3)>log 2=x  Since x=log 2<(1/3)⇒x(3x−1)<0  ⇒log_(20) 80<log_(80) 640
log2080=log80log20=1+3log21+log2log80640=log640log80=1+6log21+3log2log2=xlog2080log80640[(1+3x)2(1+x)(1+6x)]÷[(1+x)(1+3x)]IgnoringDenominatorsinceitdoescontributetosign2>1log2>0=1+6x+9x217x6x2=3x2x=x(3x1)Signwillbe>0ifx>13x=log210>8101/3>213>log2=xSincex=log2<13x(3x1)<0log2080<log80640
Commented by malwaan last updated on 14/Jun/15
thank you very much  Mr Prakash
thankyouverymuchMrPrakash
Commented by malwaan last updated on 14/Jun/15
what about   log_(20) 80 and log_(80) 640 ?
whataboutlog2080andlog80640?

Leave a Reply

Your email address will not be published. Required fields are marked *