Menu Close

complex-analysis-if-f-n-x-d-n-dx-n-x-x-C-C-0-n-C-Z-0-and-g-n-x-0-1-f-n-x-d-then-find-the-value-of-




Question Number 137275 by mnjuly1970 last updated on 31/Mar/21
             ......complex  analysis.....      if ,  f(α,n,x)=(d^( n) /dx^n )(α^x )  , x∈C       α∈C−{0} , n∈C−Z^− ∪{0}       and  g(n,x)=∫_0 ^( 1) f(α,n,x)dα       then  find  the value of ...        Ω=((Im(g(i,0)))/(Re(Γ(i))))        solution:        g(n,x)=∫_0 ^( 1) (d^( n) /dx^(n ) )(α^x )dα        =∫_0 ^( 1) (d^( n) /dx^n )(e^(xln(α)) )dα .....⟨∗⟩         (d^( n) /dx^n )(e^(xln(α)) )=(ln(α))^n α^x      ⟨∗⟩→ ...g(n,x)=∫_0 ^( 1) (ln(α))^n α^x dα    =_(α=e^(−y) ) ^(ln(α)=−y) ∫_0 ^( ∞) (−1)^n y^( n) e^(−yx) e^(−y) dy       =(−1)^n ∫_0 ^( 1) y^n .e^(−y(1+x)) dy      =^(y(1+x)=t) (−1)^n  ∫_0 ^( 1) ((t^n  e^(−t) )/((1+x)^(n+1) ))dt         =e^(inπ) .(1/((1+x)^(n+1) )) .Γ(n+1)       g(i,0)=e^(−π) .i.Γ(i) ......⟨∗∗⟩     Γ(i)∈C ⇒  Γ(i)=Re(Γ(i))+Im(Γ(i))     ⟨∗∗⟩→ ... g(i,0)=e^(−π) .i.[Re(Γ(i))+Im(Γ(i))]            ∴   Ω=((e^(−π) Re(Γ(i)))/(Re(Γ(i)))) =e^(−π) ...✓✓
complexanalysis..if,f(α,n,x)=dndxn(αx),xCαC{0},nCZ{0}andg(n,x)=01f(α,n,x)dαthenfindthevalueofΩ=Im(g(i,0))Re(Γ(i))solution:g(n,x)=01dndxn(αx)dα=01dndxn(exln(α))dα..dndxn(exln(α))=(ln(α))nαxg(n,x)=01(ln(α))nαxdα=ln(α)=yα=ey0(1)nyneyxeydy=(1)n01yn.ey(1+x)dy=y(1+x)=t(1)n01tnet(1+x)n+1dt=einπ.1(1+x)n+1.Γ(n+1)g(i,0)=eπ.i.Γ(i)Γ(i)CΓ(i)=Re(Γ(i))+Im(Γ(i))g(i,0)=eπ.i.[Re(Γ(i))+Im(Γ(i))]Ω=eπRe(Γ(i))Re(Γ(i))=eπ

Leave a Reply

Your email address will not be published. Required fields are marked *