Menu Close

compute-sec-5-x-tan-3-x-dx-




Question Number 12533 by tawa last updated on 24/Apr/17
compute  ∫sec^5 (x) tan^3 (x) dx
computesec5(x)tan3(x)dx
Answered by sma3l2996 last updated on 25/Apr/17
I=∫sec^5 (x)tan^3 (x)dx=∫((sin^3 x)/(cos^8 x))dx  u=sin^2 x⇒u′=2cosxsinx  v′=((sinx)/(cos^8 x))⇒v=(1/(7cos^7 x))  I=((sin^2 x)/(7cos^7 x))−(2/7)∫((sinx)/(cos^6 x))dx+c  I=((sin^2 x)/(7cos^7 x))−(2/7)×((1/(5cos^5 x)))+C  =(1/7)sec^5 (x)tan^2 (x)−(2/(35))sec^5 (x)+C  I=(1/7)sec^5 (x)(tan^2 (x)−(2/5))+C
I=sec5(x)tan3(x)dx=sin3xcos8xdxu=sin2xu=2cosxsinxv=sinxcos8xv=17cos7xI=sin2x7cos7x27sinxcos6xdx+cI=sin2x7cos7x27×(15cos5x)+C=17sec5(x)tan2(x)235sec5(x)+CI=17sec5(x)(tan2(x)25)+C
Commented by tawa last updated on 25/Apr/17
God bless you sir.
Godblessyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *