Menu Close

compute-sec-5-x-tan-3-x-dx-




Question Number 12533 by tawa last updated on 24/Apr/17
compute  ∫sec^5 (x) tan^3 (x) dx
$$\mathrm{compute} \\ $$$$\int\mathrm{sec}^{\mathrm{5}} \left(\mathrm{x}\right)\:\mathrm{tan}^{\mathrm{3}} \left(\mathrm{x}\right)\:\mathrm{dx} \\ $$
Answered by sma3l2996 last updated on 25/Apr/17
I=∫sec^5 (x)tan^3 (x)dx=∫((sin^3 x)/(cos^8 x))dx  u=sin^2 x⇒u′=2cosxsinx  v′=((sinx)/(cos^8 x))⇒v=(1/(7cos^7 x))  I=((sin^2 x)/(7cos^7 x))−(2/7)∫((sinx)/(cos^6 x))dx+c  I=((sin^2 x)/(7cos^7 x))−(2/7)×((1/(5cos^5 x)))+C  =(1/7)sec^5 (x)tan^2 (x)−(2/(35))sec^5 (x)+C  I=(1/7)sec^5 (x)(tan^2 (x)−(2/5))+C
$${I}=\int{sec}^{\mathrm{5}} \left({x}\right){tan}^{\mathrm{3}} \left({x}\right){dx}=\int\frac{{sin}^{\mathrm{3}} {x}}{{cos}^{\mathrm{8}} {x}}{dx} \\ $$$${u}={sin}^{\mathrm{2}} {x}\Rightarrow{u}'=\mathrm{2}{cosxsinx} \\ $$$${v}'=\frac{{sinx}}{{cos}^{\mathrm{8}} {x}}\Rightarrow{v}=\frac{\mathrm{1}}{\mathrm{7}{cos}^{\mathrm{7}} {x}} \\ $$$${I}=\frac{{sin}^{\mathrm{2}} {x}}{\mathrm{7}{cos}^{\mathrm{7}} {x}}−\frac{\mathrm{2}}{\mathrm{7}}\int\frac{{sinx}}{{cos}^{\mathrm{6}} {x}}{dx}+{c} \\ $$$${I}=\frac{{sin}^{\mathrm{2}} {x}}{\mathrm{7}{cos}^{\mathrm{7}} {x}}−\frac{\mathrm{2}}{\mathrm{7}}×\left(\frac{\mathrm{1}}{\mathrm{5}{cos}^{\mathrm{5}} {x}}\right)+{C} \\ $$$$=\frac{\mathrm{1}}{\mathrm{7}}{sec}^{\mathrm{5}} \left({x}\right){tan}^{\mathrm{2}} \left({x}\right)−\frac{\mathrm{2}}{\mathrm{35}}{sec}^{\mathrm{5}} \left({x}\right)+{C} \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{7}}{sec}^{\mathrm{5}} \left({x}\right)\left({tan}^{\mathrm{2}} \left({x}\right)−\frac{\mathrm{2}}{\mathrm{5}}\right)+{C} \\ $$
Commented by tawa last updated on 25/Apr/17
God bless you sir.
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *