Menu Close

Consider-a-triangle-ABC-Let-D-and-E-are-two-points-on-AB-and-AC-respectively-such-that-DE-BC-Now-there-are-two-parts-of-ABC-ADE-and-trapizoid-DBCE-If-these-two-regions-have-same-area-W




Question Number 3823 by Rasheed Soomro last updated on 21/Dec/15
Consider a triangle ABC. Let D  and  E  are two points on AB  and  AC respectively  such that DE ∥ BC. Now there are two  parts of △ABC : △ADE   and  trapizoid  DBCE. If these two regions have same area  What will be the ratio of two distances :  (i) distance of DE from point A and  (ii) distance between BC and DE  ?
ConsideratriangleABC.LetDandEaretwopointsonABandACrespectivelysuchthatDEBC.NowtherearetwopartsofABC:ADEandtrapizoidDBCE.IfthesetworegionshavesameareaWhatwillbetheratiooftwodistances:(i)distanceofDEfrompointAand(ii)distancebetweenBCandDE?
Commented by prakash jain last updated on 21/Dec/15
AX−Altitute from A to BC, intersects  DE at Y.  △ADY and △ABX are similar  ((DY)/(BX))=((AY)/(AX))=k  △AYF and △AXC are similar  ((AY)/(AX))=((YE)/(XC))=k  YE=kXC  DY=kBX  DY+YE=k(BX+XC)⇒DE=kBC  AY=kAX  XY=AX−AY=(1−k)AX  area of △ADE=(1/2)AY×DE=(1/2)kAX×kBC  area of trpezium DEBC=BC×XY=BC×(1−k)AX  (1/2)k^2 =1−k  k^2 −2k−2=0  k=((2±(√(4+8)))/2)  k>0⇒k=1+(√3)
AXAltitutefromAtoBC,intersectsDEatY.ADYandABXaresimilarDYBX=AYAX=kAYFandAXCaresimilarAYAX=YEXC=kYE=kXCDY=kBXDY+YE=k(BX+XC)DE=kBCAY=kAXXY=AXAY=(1k)AXareaofADE=12AY×DE=12kAX×kBCareaoftrpeziumDEBC=BC×XY=BC×(1k)AX12k2=1kk22k2=0k=2±4+82k>0k=1+3
Commented by Rasheed Soomro last updated on 21/Dec/15
A Novel Method!
ANovelMethod!

Leave a Reply

Your email address will not be published. Required fields are marked *