Menu Close

Consider-the-functions-f-x-5-4-x-and-g-x-0-25-2x-4-For-what-values-of-x-do-these-functions-assume-equal-values-




Question Number 70147 by Maclaurin Stickker last updated on 01/Oct/19
Consider the functions   f(x)=5×4^(−x)  and g(x)=(0.25)^(2x) +4  For what values of x do these   functions assume equal values?
Considerthefunctionsf(x)=5×4xandg(x)=(0.25)2x+4Forwhatvaluesofxdothesefunctionsassumeequalvalues?
Commented by kaivan.ahmadi last updated on 01/Oct/19
(5/4^x )=(1/4^(2x) )+4⇒(5/2^(2x) )−(1/2^(4x) )=4⇒((5×2^(2x) −1)/2^(4x) )=4⇒  5×2^(2x) −1=4×2^(4x) ⇒5×2^(2x) −4×2^(4x) =1⇒  2^(2x) (5−4×2^(2x) )=1  t=2^(2x) ⇒t(5−4t)=1⇒4t^2 −5t+1=0⇒   { ((t=1⇒2^(2x) =1⇒x=0)),((t=(1/4)⇒2^(2x) =(1/4)=2^(−2) ⇒x=−1)) :}
54x=142x+4522x124x=45×22x124x=45×22x1=4×24x5×22x4×24x=122x(54×22x)=1t=22xt(54t)=14t25t+1=0{t=122x=1x=0t=1422x=14=22x=1
Commented by Prithwish sen last updated on 01/Oct/19
∵ the functions assume equal values  ∴ 5×4^(−x) = (0.25)^(2x) +4   5×((1/4))^x = ((1/4))^(2x) + 4  let ((1/4))^x  = a  ∴ a^2 −5a +4 = 0  ⇒ (a−4)(a−1) = 0  ∴ either                        or       (a−4) = 0                  (a−1) = 0             a = 4                                a = 1        ((1/4))^x  = 4                     ((1/4))^x = 1    ⇒  x = −1  and  0     please check.
thefunctionsassumeequalvalues5×4x=(0.25)2x+45×(14)x=(14)2x+4let(14)x=aa25a+4=0(a4)(a1)=0eitheror(a4)=0(a1)=0a=4a=1(14)x=4(14)x=1x=1and0pleasecheck.
Commented by Maclaurin Stickker last updated on 01/Oct/19
Perfect! Thank you, sir.
Perfect!Thankyou,sir.
Commented by Maclaurin Stickker last updated on 01/Oct/19
Great answer!
Greatanswer!
Answered by Kunal12588 last updated on 01/Oct/19
f(x)=g(x)  ⇒5×4^(−x) =(0.25)^(2x) +4  ⇒(5/4^x )=(1/4^(2x) )+4  let (1/4^x )=t  ⇒5t=t^2 +4  ⇒t^2 −5t+4=0  ⇒t=1 , 4  (1/4^x )=1⇒x=0  (1/4^x )=4⇒x=−1  verification  5×4^0 =5=4^0 +4=5  5×4^1 =20=4^2 +4=16+4=20
f(x)=g(x)5×4x=(0.25)2x+454x=142x+4let14x=t5t=t2+4t25t+4=0t=1,414x=1x=014x=4x=1verification5×40=5=40+4=55×41=20=42+4=16+4=20
Commented by Maclaurin Stickker last updated on 01/Oct/19
Thank you.
Thankyou.

Leave a Reply

Your email address will not be published. Required fields are marked *