Menu Close

convergence-and-value-of-n-1-n-n-n-2-




Question Number 140982 by Mathspace last updated on 14/May/21
convergence and value of  Σ_(n=1) ^∞  (n^n /((n!)^2 ))
$${convergence}\:{and}\:{value}\:{of} \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{n}^{{n}} }{\left({n}!\right)^{\mathrm{2}} } \\ $$$$ \\ $$$$ \\ $$
Commented by mohammad17 last updated on 14/May/21
U_n =(n^n /((n!)^2 ))     ,  U_(n+1) =(((n+1)^(n+1) )/(((n+1)!)^2 ))    lim_(n→∞) (U_(n+1) /U_n )=lim_(n→∞) (((n+1)^n (n+1))/((n+1)^2 (n!)^2 ))×(((n!)^2 )/n^n )    =lim_(n→∞) (((n+1)/n))^n ×lim_(n→∞) (1/((n+1)))=e^n ×0=0    So,the series is converge by ratio test
$${U}_{{n}} =\frac{{n}^{{n}} }{\left({n}!\right)^{\mathrm{2}} }\:\:\:\:\:,\:\:{U}_{{n}+\mathrm{1}} =\frac{\left({n}+\mathrm{1}\right)^{{n}+\mathrm{1}} }{\left(\left({n}+\mathrm{1}\right)!\right)^{\mathrm{2}} } \\ $$$$ \\ $$$${lim}_{{n}\rightarrow\infty} \frac{{U}_{{n}+\mathrm{1}} }{{U}_{{n}} }={lim}_{{n}\rightarrow\infty} \frac{\left({n}+\mathrm{1}\right)^{{n}} \left({n}+\mathrm{1}\right)}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} \left({n}!\right)^{\mathrm{2}} }×\frac{\left({n}!\right)^{\mathrm{2}} }{{n}^{{n}} } \\ $$$$ \\ $$$$={lim}_{{n}\rightarrow\infty} \left(\frac{{n}+\mathrm{1}}{{n}}\right)^{{n}} ×{lim}_{{n}\rightarrow\infty} \frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)}={e}^{{n}} ×\mathrm{0}=\mathrm{0} \\ $$$$ \\ $$$${So},{the}\:{series}\:{is}\:{converge}\:{by}\:{ratio}\:{test} \\ $$$$ \\ $$
Commented by mathmax by abdo last updated on 14/May/21
why lim_(n→∞) e^n .0=0?
$$\mathrm{why}\:\mathrm{lim}_{\mathrm{n}\rightarrow\infty} \mathrm{e}^{\mathrm{n}} .\mathrm{0}=\mathrm{0}? \\ $$
Commented by mnjuly1970 last updated on 14/May/21
  e.0=0
$$\:\:{e}.\mathrm{0}=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *