Menu Close

convergence-and-value-of-n-1-n-n-n-2-




Question Number 140982 by Mathspace last updated on 14/May/21
convergence and value of  Σ_(n=1) ^∞  (n^n /((n!)^2 ))
convergenceandvalueofn=1nn(n!)2
Commented by mohammad17 last updated on 14/May/21
U_n =(n^n /((n!)^2 ))     ,  U_(n+1) =(((n+1)^(n+1) )/(((n+1)!)^2 ))    lim_(n→∞) (U_(n+1) /U_n )=lim_(n→∞) (((n+1)^n (n+1))/((n+1)^2 (n!)^2 ))×(((n!)^2 )/n^n )    =lim_(n→∞) (((n+1)/n))^n ×lim_(n→∞) (1/((n+1)))=e^n ×0=0    So,the series is converge by ratio test
Un=nn(n!)2,Un+1=(n+1)n+1((n+1)!)2limnUn+1Un=limn(n+1)n(n+1)(n+1)2(n!)2×(n!)2nn=limn(n+1n)n×limn1(n+1)=en×0=0So,theseriesisconvergebyratiotest
Commented by mathmax by abdo last updated on 14/May/21
why lim_(n→∞) e^n .0=0?
whylimnen.0=0?
Commented by mnjuly1970 last updated on 14/May/21
  e.0=0
e.0=0

Leave a Reply

Your email address will not be published. Required fields are marked *