Menu Close

convergent-or-divergent-S-2-1-1-1-2-3-1-3-2-5-1-5-2-7-1-7-




Question Number 72694 by MJS last updated on 31/Oct/19
convergent or divergent?  S=(2/1)−(1/1)+(2/3)−(1/3)+(2/5)−(1/5)+(2/7)−(1/7)...
$$\mathrm{convergent}\:\mathrm{or}\:\mathrm{divergent}? \\ $$$${S}=\frac{\mathrm{2}}{\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{1}}+\frac{\mathrm{2}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{2}}{\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{2}}{\mathrm{7}}−\frac{\mathrm{1}}{\mathrm{7}}… \\ $$
Commented by mathmax by abdo last updated on 31/Oct/19
S=Σ_(n=0) ^∞  (2/(2n+1))−Σ_(n=0) ^∞  (1/(2n+1)) ⇒S=Σ_(n=0) ^∞ ((2/(2n+1))−(1/(n+1)))  =Σ_(n=0) ^∞ (1/(2n+1))  and this serie diverges.
$${S}=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{2}}{\mathrm{2}{n}+\mathrm{1}}−\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\:\Rightarrow{S}=\sum_{{n}=\mathrm{0}} ^{\infty} \left(\frac{\mathrm{2}}{\mathrm{2}{n}+\mathrm{1}}−\frac{\mathrm{1}}{{n}+\mathrm{1}}\right) \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\:\:{and}\:{this}\:{serie}\:{diverges}. \\ $$
Commented by MJS last updated on 31/Oct/19
thank you
$$\mathrm{thank}\:\mathrm{you} \\ $$
Commented by mathmax by abdo last updated on 31/Oct/19
you are welcome sir mjs.
$${you}\:{are}\:{welcome}\:{sir}\:{mjs}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *