Menu Close

cos-3-xsin-3-xdx-




Question Number 75093 by Rio Michael last updated on 07/Dec/19
∫cos^3 xsin^3 xdx
cos3xsin3xdx
Commented by mathmax by abdo last updated on 07/Dec/19
I =∫ cos^3 x sin^3 xdx =∫ (cosxsinx)^3  dx  =(1/8) ∫ (sin(2x))^3  dx =(1/8) ∫  sin(2x)sin^2 (2x)dx  =(1/8) ∫ sin(2x)(((1−cos(4x))/2))dx  =(1/(16)) ∫ sin(2x)dx−(1/(16)) ∫  sin(2x)cos(4x)dx  sin(2x)cos(4x) =cos((π/2)−2x)cos(4x)  =(1/2){ cos((π/2)+2x) +cos((π/2)−6x)} =(1/2){sin(6x)−sin(2x)} ⇒  I =−(1/(32)) cos(2x)−(1/(32))∫( sin(6x)−sin(2x))dx  =−(1/(32))cos(2x)+(1/(6×32)) cos(6x)−(1/(64)) cos(2x)+C  =−(3/(64)) cos(2x) +(1/(192)) cos(6x) +C
I=cos3xsin3xdx=(cosxsinx)3dx=18(sin(2x))3dx=18sin(2x)sin2(2x)dx=18sin(2x)(1cos(4x)2)dx=116sin(2x)dx116sin(2x)cos(4x)dxsin(2x)cos(4x)=cos(π22x)cos(4x)=12{cos(π2+2x)+cos(π26x)}=12{sin(6x)sin(2x)}I=132cos(2x)132(sin(6x)sin(2x))dx=132cos(2x)+16×32cos(6x)164cos(2x)+C=364cos(2x)+1192cos(6x)+C
Answered by mr W last updated on 07/Dec/19
∫cos^3 xsin^3 xdx  =∫cos^2 xsin^3 x d(sin x)  =∫(1−sin^2  x)sin^3 x d(sin x)  =∫(sin^3  x−sin^5  x) d(sin x)  =((sin^4  x)/4)−((sin^6  x)/6)+C
cos3xsin3xdx=cos2xsin3xd(sinx)=(1sin2x)sin3xd(sinx)=(sin3xsin5x)d(sinx)=sin4x4sin6x6+C
Commented by Rio Michael last updated on 07/Dec/19
thank you sir,so much
thankyousir,somuch

Leave a Reply

Your email address will not be published. Required fields are marked *