cos-3-xsin-3-xdx- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 75093 by Rio Michael last updated on 07/Dec/19 ∫cos3xsin3xdx Commented by mathmax by abdo last updated on 07/Dec/19 I=∫cos3xsin3xdx=∫(cosxsinx)3dx=18∫(sin(2x))3dx=18∫sin(2x)sin2(2x)dx=18∫sin(2x)(1−cos(4x)2)dx=116∫sin(2x)dx−116∫sin(2x)cos(4x)dxsin(2x)cos(4x)=cos(π2−2x)cos(4x)=12{cos(π2+2x)+cos(π2−6x)}=12{sin(6x)−sin(2x)}⇒I=−132cos(2x)−132∫(sin(6x)−sin(2x))dx=−132cos(2x)+16×32cos(6x)−164cos(2x)+C=−364cos(2x)+1192cos(6x)+C Answered by mr W last updated on 07/Dec/19 ∫cos3xsin3xdx=∫cos2xsin3xd(sinx)=∫(1−sin2x)sin3xd(sinx)=∫(sin3x−sin5x)d(sinx)=sin4x4−sin6x6+C Commented by Rio Michael last updated on 07/Dec/19 thankyousir,somuch Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Find-u-v-i-f-z-z-2-ii-f-z-z-1-z-Next Next post: with-out-special-function-find-0-pi-10-tanx-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.