Menu Close

cos-cos-2-cos-4-cos-2-n-sin-2-n-1-2-n-1-sin-prove-




Question Number 143057 by ERA last updated on 09/Jun/21
cos(𝛂)×cos(2α)×cos(4α)×....×cos(2^n 𝛂)=((sin(2^(n+1) 𝛂))/(2^(n+1) sin(α)))  prove
$$\mathrm{cos}\left(\boldsymbol{\alpha}\right)×\mathrm{cos}\left(\mathrm{2}\alpha\right)×\mathrm{cos}\left(\mathrm{4}\alpha\right)×….×\mathrm{cos}\left(\mathrm{2}^{\mathrm{n}} \boldsymbol{\alpha}\right)=\frac{\boldsymbol{\mathrm{sin}}\left(\mathrm{2}^{\boldsymbol{\mathrm{n}}+\mathrm{1}} \boldsymbol{\alpha}\right)}{\mathrm{2}^{\mathrm{n}+\mathrm{1}} \mathrm{sin}\left(\alpha\right)} \\ $$$$\boldsymbol{\mathrm{prove}} \\ $$
Answered by Dwaipayan Shikari last updated on 09/Jun/21
cos(α).cos(2α).cos(4α)...cos(2^n α)  =((sin(2α))/(2sin(α))).((sin(4α))/(2sin(2α))).((sin(8α))/(2sin(4α)))...((sin(2^(n+1) α))/(2sin(2^n α)))  =((sin(2^(n+1) α))/(2^n sin(α)))
$${cos}\left(\alpha\right).{cos}\left(\mathrm{2}\alpha\right).{cos}\left(\mathrm{4}\alpha\right)…{cos}\left(\mathrm{2}^{{n}} \alpha\right) \\ $$$$=\frac{{sin}\left(\mathrm{2}\alpha\right)}{\mathrm{2}{sin}\left(\alpha\right)}.\frac{{sin}\left(\mathrm{4}\alpha\right)}{\mathrm{2}{sin}\left(\mathrm{2}\alpha\right)}.\frac{{sin}\left(\mathrm{8}\alpha\right)}{\mathrm{2}{sin}\left(\mathrm{4}\alpha\right)}…\frac{{sin}\left(\mathrm{2}^{{n}+\mathrm{1}} \alpha\right)}{\mathrm{2}{sin}\left(\mathrm{2}^{{n}} \alpha\right)} \\ $$$$=\frac{{sin}\left(\mathrm{2}^{{n}+\mathrm{1}} \alpha\right)}{\mathrm{2}^{{n}} {sin}\left(\alpha\right)} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *