Menu Close

cos-cosx-dx-




Question Number 143810 by Jamshidbek last updated on 18/Jun/21
    ∫cos(cosx)dx=?
cos(cosx)dx=?
Answered by mathmax by abdo last updated on 18/Jun/21
∫ cos(cosx)dx =∫ Σ_(n=0) ^∞  (((−1)^n  cos^(2n) x)/((2n!))dx  =Σ_(n=0) ^∞  (((−1)^n )/((2n)!))∫ cos^(2n)  dx=Σ_(n=0) ^∞  (((−1)^n )/((2n)!))w_n   W_n =∫ cos^(2n)  dx(wallis generalise)
cos(cosx)dx=n=0(1)ncos2nx(2n!dx=n=0(1)n(2n)!cos2ndx=n=0(1)n(2n)!wnWn=cos2ndx(wallisgeneralise)
Answered by mathmax by abdo last updated on 19/Jun/21
∫ cos(cosx)dx =Re(∫ e^(icosx) dx)  but  ∫ e^(icosx) dx =∫Σ_(n=0) ^∞  ((i^n  cos^n x)/(n!))dx =Σ_(n=0) ^∞  (i^n /(n!))∫  cos^n  dx and  ∫ cos^n dx=∫ (((e^(ix)  +e^(−ix) )/2))^n  dx =(1/2^n )∫ Σ_(k=0) ^n  C_n ^k  e^(ikx) (e^(−ix) )^(n−k)   =(1/2^n )Σ_(k=0) ^n  C_n ^k  ∫ e^(ikx−i(n−k)x)  dx  =(1/2^n )Σ_(k=0) ^n  C_n ^k  ∫ e^((2ik−in)x)  dx =(1/2^n )Σ_(k=0) ^n  (C_n ^k /(2ik−in)) +k ⇒  ∫ e^(icosx) dx=Σ_(n=0) ^∞  (i^n /(n!))((1/2^n )Σ_(k=0) ^n  (C_n ^k /(i(2k−n))))+k
cos(cosx)dx=Re(eicosxdx)buteicosxdx=n=0incosnxn!dx=n=0inn!cosndxandcosndx=(eix+eix2)ndx=12nk=0nCnkeikx(eix)nk=12nk=0nCnkeikxi(nk)xdx=12nk=0nCnke(2ikin)xdx=12nk=0nCnk2ikin+keicosxdx=n=0inn!(12nk=0nCnki(2kn))+k
Commented by mathmax by abdo last updated on 20/Jun/21
∫ e^(icosx) dx =Σ_(n=0) ^∞  (i^n /(n!2^n ))Σ_(k=0) ^n  (C_n ^k /(i(2k−n)))e^((2k−n)ix)  +K
eicosxdx=n=0inn!2nk=0nCnki(2kn)e(2kn)ix+K

Leave a Reply

Your email address will not be published. Required fields are marked *